Evaluation of Heavy Metals Concentration and Its Consumption Risk in Trout Fish (Oncorhynchus Mykiss)

Hadi Tahsini¹*, Maryam Alizadeh², Hoshyar Gavilian³

1. M.Sc. Student, Environment Pollution, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
2. M.Sc. Student, Environment Pollution, Faculty of Natural Resources and Earth Sciences, University of Kashan, Iran
3. M.S Student in Natural Resources Engineering Department of Environment, University of Kurdistan, Iran

* E-mail: haditahsini@yahoo.com

Received: 22 Feb 2018 ; Accepted: 21 Jul 2018

ABSTRACT

Background and Objectives: Nowadays, the pollution of aquatic ecosystems caused by entry of heavy metals is an issue that makes it essential to check the wholesome of the aquatic animals that are consumed by human. When these metals enter the canvas of aquatic organisms, cause tension due to bioavailability, and their toxicity leads to teratogenic, mutagenic and carcinogenic effects in living organisms.

Methods: Thirty rainbow trout were prepared from each fishing farm pond which are located in Sanandaj (Nanale Village) and Kamyaran (Diwanaw Village). Then, samples were prepared using acid digestion method in the laboratory and the concentration of these metals was measured using atomic absorption spectrometer (Phonix 986). The achieved data were analyzed using SPSS software.

Results: The average concentration of the Copper in liver and muscle tissues was 1.53 and 0.15, Magnesium 3.7 and 7.57, Iron 0.28 and 0.6, Zinc 4.52 and 1.05, and Nickel 0.04 and 0.03 µg/g of fresh weight. The maximum daily consumption allowance was 888.7 g for adults and 177.77 g for children.

Conclusion: The average concentration of Copper, Iron, Zinc, Nickel and Magnesium in muscle tissue of rainbow trout compared to international standards, is slightly lower than that at current consumption rates, long-term health risks to consumers is realized.

Keywords: Heavy metals, Rainbow trout (Oncorhynchus mykiss), length, Fish farming ponds, Risk assessment, Consumption.
ارزیابی غلظت فلزات سنگین و ریسک مصرف آن در ماهی قزل آلاي رنگین کمان (Oncorhynchus mykiss) در حوضچه‌های پرورش ماهی (مطالعه موردی: شهرستان کامیاران و سنندج)

چکیده

زمینه و هدف: امروزه آلودگی اکوسیستمهای آبی از اثر ورود فلزات سنگین، امری است که بررسی سلامت آبزیان مورد استفاده است. این فلزات وقیت وارد بودن ساکنان آبی می‌شود. به علت توافقات انتانگیزی زیستی سپس نشده و غلظت سپس آن به موجب آن در اثرات تراژدیک، جذب زایی و سرطان زایی در ارگانیسم های زینتی می‌شود.

مواد و روش‌ها: تعداد 300 فیزیک ماهی قزل آلاي رنگین کمان از طرف حوضچه پرورش ماهی واقع در شهرستان های سندج و مرود استفاده انسان را ضروری می‌دانند. این فلزات وقیت وارد بودن ساکنان آبی می‌شود. به علت توافقات انتانگیزی زیستی سپس نشده و غلظت سپس آن به موجب آن در اثرات تراژدیک، جذب زایی و سرطان زایی در ارگانیسم های زینتی می‌شود.

یافته‌ها: میانگین غلظت فلز مس در حوضچه‌های کبود عضله بین قهر، قهر، سبز و پرورش ماهی، واقع در شهرستان سندج و مرود در حوضچه‌های فلزات سنگین و ریسک مصرف آن در ماهی قزل آلاي رنگین کمان در مقایسه با استانداردهای بین‌المللی، پایین‌تر از حدی است که با میزان مصرف کنونی، خطرات بهداشتی را در بلند مدت می‌تواند نشان دهد.

کلمات کلیدی: فلزات سنگین، قزل آلاي رنگین کمان (Oncorhynchus mykiss) طول چنگالی، حوضچه پرورش ماهی، ارزیابی ریسک مصرف

توجه مثبتی داشت. میانگین فلز مس در حوضچه‌های کبود عضله بین قهر، قهر، سبز و پرورش ماهی، به دست آمده. مقدار حداقل مصرف مجاز حوزه‌های 1776/207/1603 نیکل و 1603/1776/207 می‌تواند بر هزینه روی نیکل و 1603/1776/207 در مصرف کنونی آن کند.
Oncorhynchus mykiss (trout)

MAFF (Ministry of Agriculture, Fisheries and Food)

FAO (Food and Agriculture Organization)

WHO (World Health Organization)
فیکتیون می‌تواند بهمراه با سایر عناصر ممکن باشد.
روش تحقیق

تعداد ۱۰۰ عضو ماهی ویژگی‌های رنگ‌کننده کنار تأسیس سال ۱۳۹۶ از پهلوی‌های ماهی برخاست. همیار انتخاب زمان تهیه برداری با این دلیل بود که ماهیان در این فصل در دی‌آت‌رسا بند و تغذیه قرار دارند. تجزیه ماهیزاده آنها به دو قسمت ماهی زیر ۱۸۰۰ و بالای آن تقسیم گردید. نمونه‌ها بر اثر تصادف انجام شد. از میان آنها سازی نمونه شد. پس از انتقال به آزمایشگاه ابتدا به دو گروه کنترل و سپس طول چینگال و وزن ماهی ها به ترتیب به روش تهیه تخمین بیومتری با دقت ۱ میلی‌متر و ترازوی دیده ای با دقت ۱ کرم اندوزگیری شدند. مقدار ۲۰ کرم از هر دو گروه کیفیت و ضعف (عضله سفید ساخته ماهی) از نمونه‌های ماهی جدای و در آن‌ها بین ۱۰۰ و ۲۰۰۰ سیتی‌گراد به مدت ۲۴ ساعت خیس گردید. سپس نمونه‌های خیس شده به سطح دیسک‌اتور انتقال داده و سپس از ریسیدن به هوا به هر چیزی تا زمان وارد شدن کامل سازی‌شده شدند. سپس ۵۰۰ کرم (وزن تر) از نمونه کاملی به دو دسته ماهی را با افزودن ۵ میلی لیتر اسید نیتریک غلیظ (HNO۳) در حجم اتمسفری حیرات داده شدند که محیط کامل شده‌ساخته‌بندی نمونه‌های ماهیزاده‌گیری شفاف برای اندازه‌گیری فلزات با دست آمیخته. ۴۰ سوسپنسیون‌های ایجاد شدند با استفاده از ۲۰ محیط ریسیدن ۴۲ میکرورم‌صرف و محلول صاف شدند با دو یک بان دم忽 متقابل و به حجم ۵۰ میلی لیتر رسانده شدند. با برای اندازه‌گیری غلظت فلزات سنجش محلول بیکارخی به دست آمده به مقدار ۱۰ آزمایش گردید. میکرورم‌در لیر به دست‌آمده جابجایی اتمی مدل ۹۸۶ Phonix.
هادی تحسینی و همکاران

اگر کمتر از یک باند، ریسک وجود ندارد.

رابطه (۲)

مدیر مزرعه (RFD) برای فلزات مس، آهن، روی و نیکل طبق استاندارد USEPA (۲۰۰۰) به ترتیب ۰/۰۴۷، ۰/۰۳ و ۰/۰۲ میلی گرم بر کیلوگرم در روز می‌باشد.

 таблицه ۳

<table>
<thead>
<tr>
<th>میکروکرگم بر گرم وزن ناچیز (RFD*BW) / C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
</tr>
</tbody>
</table>

رابطه (۳)

طبق رابطه فوق CR حداکثر میزان مصرف در روز بر حسب گرم در روز: C میکیگنی خلقت فلز مورد مطالعه بر حسب میکروکرگم بر گرم می‌باشد.

یافته‌ها

مشخصات آماری خلقت فلزات سنگین در بالاخ عضله و کبد ماهی قزل آلا رنگ کمان در دو جدول ۱ ذکر شده است. بنابراین ترکیب میکیگنی خلقت و الگوی تجمع فلز مس در بالاخ کبد، عضله به ترتیب ۰/۴ و ۰/۵۴ میکروکرگم بر گرم وزن ناچیز است (۰/۵). همچنین میکیگنی خلقت و الگوی تجمع فلز مسی در بالاخ کبد و عضله به صورت

جدول ۱: مشخصات آماری خلقت فلزات سنگین در بالاخ عضله و کبد ماهی قزل آلا رنگ کمان (میکروکرگم بر گرم وزن ناچیز)

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میکروکرگم</th>
<th>هادی</th>
<th>حداکثر</th>
<th>بالاخ</th>
<th>فلز</th>
</tr>
</thead>
<tbody>
<tr>
<td>کبد</td>
<td>۰/۵۴</td>
<td>۰/۸۹</td>
<td>۰/۹۴</td>
<td>۰/۸۶</td>
<td>مس</td>
</tr>
<tr>
<td>عضله</td>
<td>۰/۵۱</td>
<td>۰/۸۸</td>
<td>۰/۸۴</td>
<td>۰/۴۸</td>
<td>مینیمیم</td>
</tr>
<tr>
<td>کبد</td>
<td>۰/۷۳</td>
<td>۰/۹۵</td>
<td>۰/۹۴</td>
<td>۰/۸۴</td>
<td>آهن</td>
</tr>
<tr>
<td>عضله</td>
<td>۰/۵۴</td>
<td>۰/۹۸</td>
<td>۰/۸۴</td>
<td>۰/۴۸</td>
<td>ذوب</td>
</tr>
<tr>
<td>کبد</td>
<td>۰/۵۱</td>
<td>۰/۸۸</td>
<td>۰/۸۴</td>
<td>۰/۴۸</td>
<td>نیکل</td>
</tr>
<tr>
<td>عضله</td>
<td>۰/۵۴</td>
<td>۰/۸۸</td>
<td>۰/۸۴</td>
<td>۰/۴۸</td>
<td>کی</td>
</tr>
<tr>
<td>کبد</td>
<td>۰/۵۱</td>
<td>۰/۸۸</td>
<td>۰/۸۴</td>
<td>۰/۴۸</td>
<td>نیکل</td>
</tr>
<tr>
<td>عضله</td>
<td>۰/۵۴</td>
<td>۰/۸۸</td>
<td>۰/۸۴</td>
<td>۰/۴۸</td>
<td>کی</td>
</tr>
</tbody>
</table>
ازبایی غلظت فلات سنگین و ریوک مصرف آن در ماهی قزل آلای رنگی کمیان (Oncorhynchus mykiss) در حوضه‌های پورش ماهی

حروف متفاوت در سطح مرتبط به هر فلز نشان دهنده مقصد عضله در سطح 0/05 است.

جدول ۲: نتایج تحلیل همیستانی پیرسون بین غلظت فلات سنگین در طول چگالی (میلی‌متر) و وزن کل (گرم)

<table>
<thead>
<tr>
<th>فلز</th>
<th>P_Value</th>
<th>r</th>
<th>P_Value</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>کبد</td>
<td>0/0512**</td>
<td>0/012</td>
<td>0/0518**</td>
<td>0/016</td>
</tr>
<tr>
<td>عضله</td>
<td>0/001</td>
<td>0/001</td>
<td>0/010</td>
<td>0/034</td>
</tr>
<tr>
<td>عضله</td>
<td>0/019</td>
<td>0/020</td>
<td>0/016</td>
<td>0/038</td>
</tr>
<tr>
<td>عضله</td>
<td>0/077</td>
<td>0/031</td>
<td>0/036</td>
<td>0/023</td>
</tr>
<tr>
<td>عضله</td>
<td>0/014</td>
<td>0/014</td>
<td>0/019</td>
<td>0/027</td>
</tr>
<tr>
<td>عضله</td>
<td>0/007</td>
<td>0/007</td>
<td>0/004</td>
<td>0/017</td>
</tr>
<tr>
<td>عضله</td>
<td>0/037</td>
<td>0/017</td>
<td>0/015</td>
<td>0/074</td>
</tr>
</tbody>
</table>

*همیستانی در سطح 0/05 معنی‌دار است.
**همیستانی در سطح 0/01 معنی‌دار است.

جدول ۳: نتایج تحلیل همیستانی پیرسون بین غلظت فلات سنگین (میکروگرم بر گرم وزن تر)

<table>
<thead>
<tr>
<th>فلز</th>
<th>P_Value</th>
<th>r</th>
<th>P_Value</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>کبد</td>
<td>0/0558**</td>
<td>0/078</td>
<td>0/010</td>
<td>0/035</td>
</tr>
<tr>
<td>عضله</td>
<td>0/020</td>
<td>0/020</td>
<td>0/010</td>
<td>0/010</td>
</tr>
<tr>
<td>عضله</td>
<td>0/012</td>
<td>0/012</td>
<td>0/007</td>
<td>0/007</td>
</tr>
<tr>
<td>عضله</td>
<td>0/034</td>
<td>0/013</td>
<td>0/013</td>
<td>0/013</td>
</tr>
<tr>
<td>عضله</td>
<td>0/018</td>
<td>0/018</td>
<td>0/018</td>
<td>0/018</td>
</tr>
<tr>
<td>عضله</td>
<td>0/007</td>
<td>0/007</td>
<td>0/007</td>
<td>0/007</td>
</tr>
<tr>
<td>عضله</td>
<td>0/034</td>
<td>0/013</td>
<td>0/013</td>
<td>0/013</td>
</tr>
</tbody>
</table>

*همیستانی در سطح 0/01 معنی‌دار است.

مقدار 5/07 برای برگسالان (با وزن 70 کیلوگرم) و 32/41 برای کودکان (با وزن 14 کیلوگرم) باید این مطلب است که برای استفاده 25 کروم در روز ماهی قزل اآلای رنگی کمیان به عنوان میانگین مصرفی تعیین شده توسط سلسله آمار شیلات ایران (2014) در منطقه موردمطالعه ریسک مصرف وجود دارد. طبق تابع کدر مصرف حداکثر مصرف مجاز روزانه 888/7 کروم برای برگسالان و برای کودکان 177/7 کروم در جدول ۳ نتایج آزمون همیستانی پیرسون بین غلظت فلات آورده شده است. به‌این ترتیب بین غلظت مس و مینزیم، مس و ریوک، مینزیم و ریوک همبستگی معنادار وجود دارد (P<0/01) و در بقیه موارد همبستگی معنادار وجود ندارد.

با توجه به ترتیب مربوط به محسوب مجموع شاخص ریسک (NHQ)، برای فلات مورد بررسی این شاخص با ۱۹۲ مجله مهندسی بهداشت محیط، زمستان ۱۳۹۷، سال ششم، شماره ۲
جدول ۴: مقادیر شاخص ریسک و حداکثر میزان مصرف مجزا روزانه عضله ماهی قزل آلای رنگین‌کمان

<table>
<thead>
<tr>
<th>شاخص ریسک (HQ)</th>
<th>حداکثر مصرف مجزا روزانه (ADD) بر حسب میکروگرم بر گرم در روز</th>
<th>میکروگرم فاز در حسب میکروگرم بر گرم در US سنت</th>
<th>فاز US</th>
<th>مس</th>
<th>بوزکالان</th>
<th>آهن</th>
<th>روی (کیلوگرم)</th>
<th>نیکل</th>
<th>روی (کیلوگرم)</th>
<th>نیکل</th>
<th>روی (کیلوگرم)</th>
<th>نیکل</th>
<th>روی (کیلوگرم)</th>
<th>نیکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۷۵</td>
<td>۲/۰۲</td>
<td>۶/۰۲</td>
<td>۰/۲۲</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳۲</td>
<td>۰/۲۲</td>
<td>۲/۰۲</td>
<td>۰/۰۵</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۶۷۷</td>
<td>۰/۸۵</td>
<td>۱/۸۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۰</td>
<td>۱/۱۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۰۶/۰</td>
<td>۲/۵۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵: مقایسه میزان غلظت فلزات سنگین در تحقيق حاضر با حد مجاز استانداردهای بین‌المللی (میکروگرم بر گرم وزن تر)

<table>
<thead>
<tr>
<th>استانداردها</th>
<th>مس</th>
<th>فاز US</th>
<th>مس</th>
<th>تحقیق حاضر</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>FAO</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>MAFF</td>
<td>۰/۰۵</td>
</tr>
</tbody>
</table>

بحث

همیت اندام‌گیری غلظت فلزات سنگین در آب‌سان به دو محیط مهم مدیریت اکوسیستم و سلامت غذایی انسان باز می‌گردد. در این پژوهش تجمع فلزات مانند مس، آهن، روی، نیکل و سرب در بافت کبد بیش از بافت عضله مشاهده شد. اختلاف در میابگیری غلظت فلزات سنگین در بافت‌های مختلف ماهی توسط منحنی زیادی گزارش شده است. ۳۰۳

قابلیت تجمع پذیری در کبد نسبت به عضله برای فلزات سنگین بیشتر می‌باشد. تفاوت تجمع فلزات سنگین در بدن مها مهندسی بهداشت محيطی، زمستان ۱۳۹۷، سال ششم. شماره ۲

۱۳۳
ارزیابی غلظت فلزات سنگین و رسپک مصرف آن در ماهی قزل آلای رنگین‌کمان (Oncorhynchus mykiss) در حوضه‌های پرورش ماهی

هامکاران (2011) در بررسی فلزات مس، آهن، نیکل و روی در بافت کبد بیشتر مشاهده شده است که با مطالعه حاضر مطالعات دارد. میزان غلظت فلز از نظر کبد و عضله ماهی نسبت به سایر فلزات سنگین در کم‌تر مقدار خود می‌باشد. این مطالعه سایوز (2012) که منوط به سایر ماهی پری، از نظر خاص فلز و آثار سیمی آن هاست، زیرا پروتئین‌های دیگری در داخل سلول نقش آنی امکان‌پذیر است. مطالعه غلظت فلزات سنگی از قبیل غلظت فلزات در بافت کبد و عضله ماهی و کبد ماهی پری‌سین است.

میزان غلظت فلز ضروری روی بیش از مس در این مطالعه مشاهده شد که این موضوع می‌تواند به دلیل دفع کم‌تر روی نسبت به فلز مس باشد. از طرفی به دلیل مانگان‌زمین‌های روی و آلومین. نسبت به پروتئین باشند که موجب تشکیل حلقه‌های پایدار می‌شود. این مطالعه 37 جایگزینی و نکات متابولیک متعادلی است. کبد بیشتر از عضله و غلظت مزین در بافت عضله بیشتر از بایت کبد مشاهده گردید. همبستگی با مطالعه 44 جایزه و

هُمِکاران (2011) در بررسی فلزات مس، آهن، نیکل و روی در بافت کبد بیشتر مشاهده شده است که با مطالعه حاضر، اشاره‌های انسانی دارند. میزان غلظت فلز از نظر کبد و عضله ماهی نسبت به سایر فلزات سنگین در کم‌تر مقدار خود می‌باشد. این مطالعه سایوز (2012) که منوط به سایر ماهی پری، از نظر خاص فلز و آثار سیمی آن هاست، زیرا پروتئین‌های دیگری در داخل سلول نقش آنی امکان‌پذیر است. مطالعه غلظت فلزات سنگی از قبیل غلظت فلزات در بافت کبد و عضله ماهی و کبد ماهی پری‌سین است.

میزان غلظت فلز ضروری روی بیش از مس در این مطالعه مشاهده شد که این موضوع می‌تواند به دلیل دفع کم‌تر روی نسبت به فلز مس باشد. از طرفی به دلیل مانگان‌زمین‌های روی و آلومین. نسبت به پروتئین باشند که موجب تشکیل حلقه‌های پایدار می‌شود. این مطالعه 37 جایگزینی و نکات متابولیک متعادلی است. کبد بیشتر از عضله و غلظت مزین در بافت عضله بیشتر از بایت کبد مشاهده گردید. همبستگی با مطالعه 44 جایزه و
هادی تحسینی و همکاران

tابن مصرف (25 گرم در روز) برای مصرف کنندگان آنها در این مناطق ریسک های آشکاری را به همراه دارد. میزان شاخص ریسک بیشتر از یک بینانگر این اثر که افراد مصرف کننده در مصرف ماهی قزل آلای رنگین کمان در معرض میزان بیشتری از ذرات مایع قرار می‌گیرند. در مجموع با توجه به جمع شاخص ریسک، حد مجاز مصرف این ماهی به میزان 7 گرم در روز برای پرگاسانان و 177/7 گرم در روز برای کودکان محاسبه شد. با این وجود میزان برآورد شاخص ریسک بیک میزان نسبی و ماحقته کارانه است که می‌تواند تأثیری در میزان وجود ریسک برای برای ما آشکار کند و به علتین یک شاخص مناسب مورد استفاده قرار گیرد.

نتیجه‌گیری

در جمع بندی نهایی، با وجود اینکه مقایسه میزان غلظت فلزات سنگین مس، آهین، روز، مسیورم و نیکل در تحقیق حاصل با حد استاندارد FAO و USEPA و WHO باعث نشان داد که غلظت فلزات مذکور کمتر از حد مجاز است. اما نتایج ارزیابی شاخص ریسک مصرف این ماهی را حاصل می‌نماید. بهطوری که میزان برآورد شاخص ریسک برای فلزات مس و روی بین یک که دست کم می‌تواند نشان دهده این مطلب باشد که مصرف ماهی قزل آلای مورد مطالعه با نرخ

Reference

9. Khayatzadeh J, Abbasi E. The Effects of Heavy Metals on Aquatic Animals. The 1st International Applied Geological Congress; 26-28 April 2010; Department of Geology; Islamic Azad University of Mashad, Iran. [In Persian].

مجله مهندسی بهداشت محیط، زمستان 1397، سال ششم، شماره 2 195

18. Yeganeh M. Modeling the process of accumulation of heavy elements in surface soils of Hamedan province and determining the risk of it for human health. Isfahan University of Technology 2012: 250. [dissertation]. [In Persian]

41. Schriver DF, Atkins PW, Longford CH. Inorganic...

