1. Sodhi KK, Mishra LC, Singh CK, et al. Perspective on the heavy metal pollution and recent remediation strategies. Curr Res Microbiol Sci. 2022; 3: 100166. [
DOI:10.1016/j.crmicr.2022.100166]
2. Genchi G, Carocci A, Lauria G, et al. Nickel: Human health and environmental toxicology. Int J Environ Res Public Health. 2020; 17(3): 679. [
DOI:10.3390/ijerph17030679]
3. Satyam S, Patra S. Innovations and challenges in adsorption‐based wastewater remediation: A comprehensive review. Heliyon. 2024; 10: e29573. [
DOI:10.1016/j.heliyon.2024.e29573]
4. Godiya CB, Liang M, Sayed SM, et al. Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J Environ Manage. 2019; 232: 829-841. [
DOI:10.1016/j.jenvman.2018.11.131]
5. Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. Environ Res. 2024; 118562. [
DOI:10.1016/j.envres.2024.118562]
6. Hossain MS, Hossain MM, Khatun MK, et al. Hydrogel-based superadsorbents for efficient removal of heavy metals in industrial wastewater treatment and environmental conservation. Environ Functional Mater. 2024; 2(2): 142-158. [
DOI:10.1016/j.efmat.2024.01.001]
7. Mittal H, Ray SS, Okamoto M. Recent progress on the design and applications of polysaccharide‐based graft copolymer hydrogels as adsorbents for wastewater purification. Macromol Mater Eng. 2016; 301(5): 496-522. [
DOI:10.1002/mame.201500399]
8. Kanikireddy V, Varaprasad K, Jayaramudu T, et al. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int J Biol Macromol. 2020; 164: 963-975. [
DOI:10.1016/j.ijbiomac.2020.07.160]
9. Rahman MS, Hasan MS, Nitai AS, et al. Recent developments of carboxymethyl cellulose. Polymers. 2021; 13(8): 1345. [
DOI:10.3390/polym13081345]
10. Kurt BZ, Uckaya F, Durmus Z. Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int J Biol Macromol. 2017; 96: 149-160. [
DOI:10.1016/j.ijbiomac.2016.12.042]
11. Yang S, Fu S, Liu H, et al. Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions. J Appl Polym Sci. 2011; 119(2): 1204-1210. [
DOI:10.1002/app.32822]
12. Hiroki A, Tran HT, Nagasawa N, et al. Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by Gamma irradiation. Radiat Phys Chem. 2009;78(12): 1076-1080. [
DOI:10.1016/j.radphyschem.2009.05.003]
13. Zhang Y, Liu Y, Wang X, et al. Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydr Polym. 2014; 101: 392-400. [
DOI:10.1016/j.carbpol.2013.09.066]
14. Salama A, Shukry N, El-Sakhawy M. Carboxymethyl cellulose-g-poly (2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol. 2015; 73: 72-75. [
DOI:10.1016/j.ijbiomac.2014.11.002]
15. Wei W, Kim S, Song MH, et al. Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J Taiwan Inst Chem Eng. 2015; 57: 104-110. [
DOI:10.1016/j.jtice.2015.05.019]
16. Shui T, Feng S, Chen G, et al. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractionated from cornstalk. Biomass Bioenergy. 2017; 105: 51-58. [
DOI:10.1016/j.biombioe.2017.06.016]
17. Lakshmi DS, Trivedi N, Reddy CRK. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydr Polym. 2017; 157: 1604-1610. [
DOI:10.1016/j.carbpol.2016.11.042]
18. Chen G, Tang W, Wang X, et al. Applications of hydrogels with special physical properties in biomedicine. Polymers. 2019; 11(9): 1420. [
DOI:10.3390/polym11091420]
19. Buhus G, Popa M, Desbrieres J. Hydrogels based on carboxymethylcellulose and gelatin for inclusion and release of chloramphenicol. J Bioact Compat Polym. 2009; 24(6): 525-545. [
DOI:10.1177/0883911509349687]
20. Tavera-Quiroz MJ, Díaz JJ F, Pinotti A. Characterization of methylcellulose based hydrogels by using citric acid as a crosslinking agent. Int J Appl Eng Res. 2018; 13(17): 13302-13307.
21. Uyanga KA, Iamphaojeen Y, Daoud WA. Effect of zinc ion concentration on crosslinking of carboxymethyl cellulose sodium-fumaric acid composite hydrogel. Polymer. 2021; 225: 123788. [
DOI:10.1016/j.polymer.2021.123788]
22. Tuan Mohamood NFAZ, Abdul Halim AH, Zainuddin N. Carboxymethyl cellulose hydrogel from biomass waste of oil palm empty fruit bunch using calcium chloride as crosslinking agent. Polymers. 2021; 13(23): 4056. [
DOI:10.3390/polym13234056]
23. Ouyang K, Zhuang J, Chen C, et al. Gradient diffusion anisotropic carboxymethyl cellulose hydrogels for strain sensors. Biomacromolecules. 2021; 22(12): 5033-5041. [
DOI:10.1021/acs.biomac.1c01003]
24. Liu J, Zhang C, Zhang L, et al. Preparation and properties of carboxymethyl cellulose hydrogels. Ferroelectrics. 2019; 547(1): 37-43. [
DOI:10.1080/00150193.2019.1592481]
25. Riyajan SA, Nuim J. Interaction of green polymer blend of modified sodium alginate and carboxylmethyl cellulose encapsulation of turmeric extract. Int J Polym Sci. 2013; 2013(1): 364253. [
DOI:10.1155/2013/364253]
26. Bulut E, Şanlı O. Novel ionically crosslinked acrylamide-grafted poly (vinyl alcohol)/sodium alginate/sodium carboxymethyl cellulose pH-sensitive microspheres for delivery of Alzheimer's drug donepezil hydrochloride: Preparation and optimization of release conditions. Artif Cells Nanomed Biotechnol. 2016; 44(2): 431-442. [
DOI:10.3109/21691401.2014.962741]
27. Saffari M, Moazallahi M. Comparative evaluation of nickel ions removal from aqueous solutions using hydrochar and biochar of cypress cones. Int J Global Warming. 2022; 27(3): 247-270. [
DOI:10.1504/IJGW.2022.10048913]
28. Hidayat S, Ardiaksa P, Riveli N, et al. Synthesis and characterization of carboxymethyl cellulose (CMC) from salak-fruit seeds as anode binder for lithium-ion battery. J Phys Conf Ser. 2018; 1080(1): 012017. [
DOI:10.1088/1742-6596/1080/1/012017]
29. Fan L, Peng M, Zhou X, et al. Modification of carboxymethyl cellulose grafted with collagen peptide and its antioxidant activity. Carbohydr Polym. 2014; 112: 32-38. [
DOI:10.1016/j.carbpol.2014.05.056]
30. Jin HX, Xu HP, Wang N, et al. Fabrication of carboxymethylcellulose/metal-organic framework beads for removal of Pb (II) from aqueous solution. Materials. 2019; 12(6): 942. [
DOI:10.3390/ma12060942]
31. Grządka E, Matusiak J, Bastrzyk A, et al. CMC as a stabiliser of metal oxide suspensions. Cellulose. 2020; 27(4): 2225-2236. [
DOI:10.1007/s10570-019-02930-y]
32. Nadagouda MN, Varma RS. Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules. 2007; 8(9): 2762-2767. [
DOI:10.1021/bm700446p]
33. Wang LY, Wang MJ. Removal of heavy metal ions by poly (vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustainable Chem Eng. 2016; 4(5): 2830-2837. [
DOI:10.1021/acssuschemeng.6b00336]
34. Zong P, Cao D, Cheng Y, et al. Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions. Cellulose. 2019; 26: 4039-4060. [
DOI:10.1007/s10570-019-02358-4]
35. Basivi PK, Pasupuleti VR, Hamieh T. Surface thermodynamic properties of sodium carboxymethyl cellulose by inverse gas chromatography. Chem Eng J Adv. 2022; 9: 100207. [
DOI:10.1016/j.ceja.2021.100207]
36. Hong HJ, Lim JS, Hwang JY, et al. Carboxymethlyated cellulose nanofibrils (CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydr Polym. 2018; 195: 136-142. [
DOI:10.1016/j.carbpol.2018.04.081]
37. Manzoor K, Ahmad M, Ahmad S, et al. Removal of Pb (ii) and Cd (ii) from wastewater using arginine cross-linked chitosan-carboxymethyl cellulose beads as green adsorbent. RSC Adv. 2019; 9(14): 7890-7902. [
DOI:10.1039/C9RA00356H]
38. Gasemloo S, Khosravi M, Sohrabi MR, et al. Response surface methodology (RSM) modeling to improve removal of Cr (VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter. J Clean Prod. 2019; 208: 736-742. [
DOI:10.1016/j.jclepro.2018.10.177]
39. Abdolmaleki AY, Eisazadeh H, Taghipour Z, et al. Effect of various agents on removal of Nickel from aqueous solution using polypyrrole as an adsorbent. J Eng Sci Technol. 2012; 7: 540-551.
40. Garg UK, Kaur MP, Garg VK, et al. Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour Technol. 2008; 99(5): 1325-1331. [
DOI:10.1016/j.biortech.2007.02.011]
41. Abedpour M, Kamyab Moghadas B. Investigation of removing ionic metals of Ni (II) and Cd (II) from aqueous solution by a polyacryl amid adsorbent. Iranian Chem Eng J. 2019; 18(103): 6-19.
42. Saffari M. Optimization of cadmium removal from aqueous solutions using walnut-shell residues biochar supported/unsupported by nanoscale zero-valent iron through response surface methodology. J Chem Health Risks. 2018; 8(1).