دوره 13، شماره 3 - ( 9-1404 )                   جلد 13 شماره 3 صفحات 281-268 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yari A R, Soheil Arezoomand H R, Nadali A, Ghafuri Y. Photocatalytic degradation of the 2,4-dichlorophenoxyacetic acid in aqueous media using Fe2O3/Mn3O4 nanoparticles combined with sodium persulfate activation under ultraviolet irradiation. J Environ Health Eng 2025; 13 (3) :268-281
URL: http://jehe.abzums.ac.ir/article-1-1131-fa.html
یاری احمد رضا، سهیل آرزومند حمید رضا، نادعلی اعظم، غفوری یداله. تجزیه فتوکاتالیستی علف‌کش 2 و 4 دی‌کلروفنوکسی استیک اسید در محیط‌های آبی با استفاده از نانو ذرات Fe2O3/Mn3O4 همراه با فعال‌سازی پرسولفات سدیم در مواجهه با تابش فرابنفش. مجله مهندسی بهداشت محیط. 1404; 13 (3) :268-281

URL: http://jehe.abzums.ac.ir/article-1-1131-fa.html


1- مرکز تحقیقات آلاینده های محیطی، دانشگاه علوم پزشکی قم، قم، ایران
2- گروه مهندسی بهداشت محیط، دانشگاه علوم پزشکی همدان، همدان، ایران
چکیده:   (31 مشاهده)
زمینه و هدف: سمیت و پایداری علف‌کش ۲ و ۴-دی‌کلروفنوکسی استیک اسید (۲،۴-D) در محیط‌زیست، منجر به ورود این آلاینده به منابع آبی و ایجاد نگرانی های بهداشتی می شود. این مطالعه، کارایی یک فرآیند فتوکاتالیستی با استفاده ازFe₂O₃/Mn₃O₄ و فعال‌سازی پرسولفات سدیم (PS) تحت تابش فرابنفش (UV) را جهت حذف این آلاینده ارزیابی کرد.
مواد و روش ها: در این مطالعه آزمایشگاهی، نانوذرات Mn₃O₄ به روش ترسیب شیمیایی و Fe₂O₃ به روش هیدروترمال سنتز شدند. تأثیر متغیرهای مستقل شامل pH اولیه (۱۰-۴)، غلظت پرسولفات سدیم (mg/L۰-۰/۸) و دوز نانوذرات ( g/L۰/۰۴-۰) بر راندمان حذف ۲،۴-D با غلظت اولیه mg/L ۱۰ در یک سیستم ناپیوسته بررسی شد. طراحی آزمایش و بهینه‌سازی با استفاده از روش سطح پاسخ و رویکرد طرح مرکب مرکزی انجام شد.
یافته ها: شرایط بهینه (pHخنثی، غلظت پرسولفات سدیم PS mg/L۰/۰۴، دوز هر نانو ذره g/L۰/۰۲) فرایند به راندمان حذف 67 درصد پس از 120 دقیقه دست یافت. نتایج تحلیل واریانس نشان داد که مدل مربع دوجمله ای از دقت و برازش بسیار بالایی (۰/۹۹=R2) برخوردار است. pH و غلظت PS تاثیر بیشتری بر راندمان فرآیند نشان دادند. کاهش بازدهی در مقادیر بسیار پایین یا بسیار بالا در هر یک از متغیرها مشاهده شد.
نتیجه گیری: فرآیند فتوکاتالیستی، به طور موثر ۲،۴-D را در محیط‌های آبی تجزیه کرد. روش سطح پاسخ برای مدل‌سازی، بهینه‌سازی و درک برهمکنش پارامترهای عملیاتی موثر بود و به درک و بهبود فرآیند کمک می‌کرد.
متن کامل [PDF 2519 kb]   (12 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1404/6/4 | پذیرش: 1404/7/21 | انتشار: 1404/9/22

فهرست منابع
1. Fiorenza R, Di Mauro A, Cantarella M, et al. Selective photodegradation of 2, 4-D pesticide from water by molecularly imprinted TiO2. Journal of Photochemistry and Photobiology A: Chemistry. 2019;380:111872. [DOI:10.1016/j.jphotochem.2019.111872]
2. Hernández-Moreno E, De La Cruz AM, Hinojosa-Reyes L, et al. Synthesis, characterization, and visible light-induced photocatalytic evaluation of WO3/NaNbO3 composites for the degradation of 2, 4-D herbicide. Materials Today Chemistry. 2021;19:100406. [DOI:10.1016/j.mtchem.2020.100406]
3. Ebrahimi R, Mohammadi M, Maleki A, et al. Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(3):923-934. [DOI:10.1007/s10904-019-01280-3]
4. IARC. 2,4-DICHLOROPHENOXYACETIC ACID. DDT, Lindane, and 2,4-D, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 113. 2018.
5. Rizal MY, Saleh R, Prakoso SP, et al. Ultraviolet- and visible-light photocatalytic and sonophotocatalytic activities toward Congo red degradation using Ag/Mn3O4 nanocomposites. Materials Science in Semiconductor Processing. 2021;121:105371. [DOI:10.1016/j.mssp.2020.105371]
6. Yang W, Zhou M, Oturan N, et al. Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2, 4-D from water by iron-free electrochemical advanced oxidation. Electrochimica Acta. 2019;297:582-592. [DOI:10.1016/j.electacta.2018.11.196]
7. Asgari G, Shabanloo A, Salari M, et al. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Environmental Research. 2020;184:109367. [DOI:10.1016/j.envres.2020.109367]
8. Osgouei MS, Khatamian M, Kakili H. Improved visible-light photocatalytic activity of Mn3O4-based nanocomposites in removal of methyl orange. Materials Chemistry and Physics. 2020;239:122108. [DOI:10.1016/j.matchemphys.2019.122108]
9. Gibot P, Laffont L. Hydrophilic and hydrophobic nano-sized Mn3O4 particles. Journal of Solid State Chemistry. 2007;180(2):695-701. [DOI:10.1016/j.jssc.2006.11.024]
10. Mojtahedzadeh Asl A, Kalaee M, Abdouss M, et al. Novel targeted delivery of quercetin for human hepatocellular carcinoma using starch/polyvinyl alcohol nanocarriers based hydrogel containing Fe2O3 nanoparticles. International Journal of Biological Macromolecules. 2024;257:128626. [DOI:10.1016/j.ijbiomac.2023.128626]
11. Chen H, Zhang Z, Yang Z, et al. Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS. Chemical Engineering Journal. 2015;273:481-489. [DOI:10.1016/j.cej.2015.03.079]
12. Ghaneian MT, Tabatabaee M, Ehrampush MH, et al. Survey of photochemical oxidation efficiency of 2, 4-Dichlorophenoxyacetic acid using S2O8/UV from aqueous solution. Journal of Sabzevar University of Medical Sciences. 2017;24(3):197-203.
13. Akbari-Adergani B, Saghi M, Eslami A, et al. Removal of dibutyl phthalate from aqueous environments using a nanophotocatalytic Fe, Ag-ZnO/VIS-LED system: modeling and optimization. Environmental technology. 2017:1-11. [DOI:10.1080/09593330.2017.1332693]
14. Sridevi H, Bhat R, Selvaraj R. Removal of an agricultural herbicide (2, 4-Dichlorophenoxyacetic acid) using magnetic nanocomposite: A combined experimental and modeling studies. Environmental Research. 2023;238:117124. [DOI:10.1016/j.envres.2023.117124]
15. Suganya Josephine GA, Jayaprakash K, Suresh M, et al. Photocatalytic Degradation of 2,4-Dicholorophenoxyacetic Acid: A Herbicide by Nanocrystalline semiconductor material under Visible Light Irradiation. Materials Today: Proceedings. 2019;17:345-353. [DOI:10.1016/j.matpr.2019.06.440]
16. Nobre F, Mariano F, Santos F, et al. Heterogeneous photocatalysis of Tordon 2, 4-D herbicide using the phase mixture of TiO2. Journal of Environmental Chemical Engineering. 2019;7(6):103501. [DOI:10.1016/j.jece.2019.103501]
17. Mohammed NA, Alwared AI, Shakhir KS, et al. Synthesis, characterization of FeNi3@ SiO2@ CuS for enhance solar photocatalytic degradation of atrazine herbicides: Application of RSM. Results in Surfaces and Interfaces. 2024;16:100253. [DOI:10.1016/j.rsurfi.2024.100253]
18. Karamifar M, Sabbaghi S, Mohtaram MS, et al. Ultrasonic-assisted synthesis of TiO2/MWCNT/Pani nanocomposite: Photocatalyst characterization and optimization of efficient variables in the degradation of benzene via RSM-CCD. Powder Technology. 2024;432:119176. [DOI:10.1016/j.powtec.2023.119176]
19. Brillas E. Activation of persulfate and peroxymonosulfate for the removal of herbicides from synthetic and real waters and wastewaters. Journal of Environmental Chemical Engineering. 2023;11(5):110380. [DOI:10.1016/j.jece.2023.110380]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله مهندسی بهداشت محیط می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 All Rights Reserved | Journal of Environmental Health Engineering

Designed & Developed by : Yektaweb