:: دوره 9، شماره 2 - ( 12-1400 ) ::
جلد 9 شماره 2 صفحات 256-239 برگشت به فهرست نسخه ها
بررسی کارایی نانوذرات مس نیکل فریت بارگذاری شده روی نانوتیوب کربنی چند دیواره ای در فعال سازی پراکسی مونوسولفات برای تجزیه رنگ راکتیو بلک 5 از محلول های آبی
مهدی الحمد ، طیبه طباطبایی* ، ایمان پارسه ، فاضل امیری ، نظام الدین منگلی زاده
گروه مهندسی محیط زیست، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران
چکیده:   (740 مشاهده)
زمینه و هدف: توسعه صنایع اخیرا منجر به آزاد سازی 105 × 2 تن فاضلاب رنگی به محیط زیست شده است. حضور این محلولها به دلیل ویژگیهای پتانسیل سمیت و فعالیت سرطان‌زایی میتواند تهدیدی برای سلامتی انسان باشد. هدف این مطالعه بررسی کارایی نانوکامپوزیت MWCNTs-CuNiFe2O4 در فعال سازی پراکسی مونوسولفات (PMS) برای تجزیه رنگ راکتیو بلک 5 (RB5) بود.
روش کار: در این مطالعه نانوکامپوزیت با تکنیک های تشخیصی SEM، TEM، FTIR و XRD تعیین ویژگی شد. تاثیر پارامترهای عملیاتی همچون pH ( 2-11)، غلظت نانوکامپوزیت (750- 10 میلی گرم بر لیتر)، غلظت PMS (8- 25/0 میلی مولار)، غلظت رنگ ( 250- 10 میلی گرم بر لیتر) و زمان واکنش (60-0 دقیقه) مورد ارزیابی قرار گرفت. آزمایشات پایداری و محدود کنندگی گونه های واکنش پذیر در شرایط بهینه مورد مطالعه قرار گرفت.
یافته ها: نتایج نشان داد که سیستم MWCNTs-CuNiFe2O4/PMS عملکرد بالای در تجزیه RB5 نسبت به سیستم های همچون PMS، MWCNTs-CuNiFe2O4 و CuFe2O4/PMS دارد. تجزیه کامل RB5 در pH 7، مقدار نانوکامپوزیت 250 میلی گرم بر لیتر، مقدار PMS 4 میلی مولار و زمان واکنش 15 دقیقه بدست آمد. تصفیه مناسب محلول های واقعی به دلیل حضور مواد مداخله گر نیاز به زمان واکنش بالای 240 دقیقه می باشد. آزمایشات پایداری برای 5 سیکل واکنش نشان داد که MWCNTs-CuNiFe2O4 میتواند یک کاتالیست قابل بازیافت در فعال سازی PMS باشد. 
نتیجه گیری:  کامپوزیت سنتز شده به دلیل قابلیت بازیافت و بازدهی بالا میتواند به عنوان یک کاتالیست برای فعال سازی PMS در حذف رنگ RB5 مورد استفاده قرار گیرد.
 
واژه‌های کلیدی: نانوکامپوزیت، MWCNTs-CuNiFe2O4، پراکسی مونوسولفات، بازیافت، کاتالیزیز.
متن کامل [PDF 637 kb]   (697 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1400/10/14 | پذیرش: 1401/1/26 | انتشار: 1401/3/20
فهرست منابع
1. 1. Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 2014;209: 172-84. [DOI:10.1016/j.cis.2014.04.002] [PMID]
2. Meriç S, Kaptan D, Ölmez T. Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process. Chemosphere 2004;54(3): 435-41. [DOI:10.1016/j.chemosphere.2003.08.010] [PMID]
3. Felista MM, Wanyonyi WC, Gilbert O. Adsorption of Anionic Dye (Reactive Black 5) Using Macadamia Seed Husks: Kinetics and Equilibrium Studies. Sci African 2020: e00283. [DOI:10.1016/j.sciaf.2020.e00283]
4. Hamzeh Y, Ashori A, Azadeh E, Abdulkhani A. Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater Sci Eng C 2012;32(6): 1394-400. [DOI:10.1016/j.msec.2012.04.015] [PMID]
5. Ballav N, Debnath S, Pillay K, Maity A. Efficient removal of Reactive Black from aqueous solution using polyaniline coated ligno-cellulose composite as a potential adsorbent. J Mol Liq 2015;209: 387-96. [DOI:10.1016/j.molliq.2015.05.051]
6. Nabil GM, El-Mallah NM, Mahmoud ME. Enhanced decolorization of reactive black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). J Ind Eng Chem 2014;20(3): 994-1002. [DOI:10.1016/j.jiec.2013.06.034]
7. 7. Murugesan K, Dhamija A, Nam I-H, et al. Decolourization of reactive black 5 by laccase: optimization by response surface methodology. Dyes Pigm 2007;75(1): 176-84. [DOI:10.1016/j.dyepig.2006.04.020]
8. Mook WT, Ajeel MA, Aroua MK, Szlachta M. The application of iron mesh double layer as anode for the electrochemical treatment of Reactive Black 5 dye. J Environ Sci 2017;54: 184-95. [DOI:10.1016/j.jes.2016.02.003] [PMID]
9. Kim MH, Hwang C-H, Kang SB, et al. Removal of hydrolyzed Reactive Black 5 from aqueous solution using a polyethylenimine-polyvinyl chloride composite fiber. Chem Eng J 2015;280: 18-25. [DOI:10.1016/j.cej.2015.05.069]
10. Cardoso NF, Pinto RB, Lima EC, et al. Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 2011;269(1-3): 92-103. [DOI:10.1016/j.desal.2010.10.047]
11. He Z, Song S, Zhou H, et al. CI Reactive Black 5 decolorization by combined sonolysis and ozonation. Ultrason Sonochem 2007; 1;14(3):298-304. [DOI:10.1016/j.ultsonch.2006.09.002] [PMID]
12. Aljeboree AM, Alshirifi AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 2017;10: S3381-S93. [DOI:10.1016/j.arabjc.2014.01.020]
13. Kermani M, Farzadkia M, Morovati M, et al. Degradation of furfural in aqueous solution using activated persulfate and peroxymonosulfate by ultrasound irradiation. J Environ Manage 2020;266: 110616. [DOI:10.1016/j.jenvman.2020.110616] [PMID]
14. Han W, Li D, Zhang M, et al. Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. J Hazard Mater 2020: 122695. [DOI:10.1016/j.jhazmat.2020.122695] [PMID]
15. He D, Li Y, Lyu C, et al. New insights into MnOOH/peroxymonosulfate system for catalytic oxidation of 2, 4-dichlorophenol: Morphology dependence and mechanisms. Chemosphere 2020: 126961. [DOI:10.1016/j.chemosphere.2020.126961] [PMID]
16. Peng J, Zhou H, Liu W, et al. Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism. Chem Eng J 2020; 397:125387 [DOI:10.1016/j.cej.2020.125387]
17. Du Y, Ma W, Liu P, et al. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. J Hazard Mater 2016;308: 58-66. [DOI:10.1016/j.jhazmat.2016.01.035] [PMID]
18. La DD, Nguyen TA, Jones LA, Bhosale SV. Graphene-supported spinel CuFe2O4 composites: novel adsorbents for arsenic removal in aqueous media. Sensors 2017;17(6): 1292. [DOI:10.3390/s17061292] [PMID] [PMCID]
19. Othman I, Haija MA, Ismail I, et al. Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Mater Chem Phys 2019;238: 121931. [DOI:10.1016/j.matchemphys.2019.121931]
20. Tuan Nguyen HD, Nguyen HT, Nguyen TT, et al. The Preparation and Characterization of MnFe2O4-Decorated Expanded Graphite for Removal of Heavy Oils from Water. Materials 2019;12(12): 1913. [DOI:10.3390/ma12121913] [PMID] [PMCID]
21. Wu L-K, Wu H, Zhang H-B, et al. Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water. Chem Eng J 2018; 334:1808-19. [DOI:10.1016/j.cej.2017.11.096]
22. Velinov N, Petrova T, Ivanova R, et al. Synthesis and characterization of copper-nickel ferrite catalysts for ethyl acetate oxidation. Hyperfine Interact 2020;241(1): 1-12. [DOI:10.1007/s10751-019-1654-z]
23. Kharisov BI, Dias HR, Kharissova OV. Mini-review: ferrite nanoparticles in the catalysis. Arab J Chem 2019;12(7): 1234-46. [DOI:10.1016/j.arabjc.2014.10.049]
24. Ahamad H, Meshram N, Bankar S, et al. Structural properties of CuxNi1-xFe2O4 nano ferrites prepared by urea-gel microwave auto combustion method. Ferroelectrics 2017; 516(1):67-73. [DOI:10.1080/00150193.2017.1362285]
25. Manju BG, Raji P. Green Synthesis of Nickel-Copper Mixed Ferrite Nanoparticles: Structural, Optical, Magnetic, Electrochemical and Antibacterial Studies. J Electron Mater 2019;48(12): 7710-20. [DOI:10.1007/s11664-019-07603-x]
26. Ghadari R, Namazi H, Aghazadeh M. Synthesis of graphene oxide supported copper-cobalt ferrite material functionalized by arginine amino acid as a new high-performance catalyst. Appl Organomet Chem 2018;32(1): e3965. [DOI:10.1002/aoc.3965]
27. Masotti A, Caporali A. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 2013;14(12): 24619-42. [DOI:10.3390/ijms141224619] [PMID] [PMCID]
28. Camilli L, Passacantando M. Advances on sensors based on carbon nanotubes. Chemosensors 2018;6(4): 62. [DOI:10.3390/chemosensors6040062]
29. Yao Y, Xu F, Chen M, et al. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 2010;101(9): 3040-6. [DOI:10.1016/j.biortech.2009.12.042] [PMID]
30. Chaudhary D, Singh S, Vankar V, Khare N. ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J Photochem Photobiol A: Chem 2018;351: 154-61. [DOI:10.1016/j.jphotochem.2017.10.018]
31. Duan Q, Lee J, Liu Y, Qi H. Preparation and Photocatalytic Performance of MWCNTs/TiO2 Nanocomposites for Degradation of Aqueous Substrate. J Chem 2016;2016. [DOI:10.1155/2016/1262017]
32. Chen J, Zhang L, Huang T, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism. J Hazard Mater 2016;320: 571-80. [DOI:10.1016/j.jhazmat.2016.07.038] [PMID]
33. Lee H, Lee H-J, Jeong J, et al. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem Eng J 2015;266: 28-33. [DOI:10.1016/j.cej.2014.12.065]
34. Suwattanamala A, Bandis N, Tedsree K, Issro C. Synthesis, characterization and adsorption properties of Fe3O4/MWCNT magnetic nanocomposites. Mater Today: Proc 2017;4(5): 6567-75. [DOI:10.1016/j.matpr.2017.06.169]
35. Ensafi AA, Saeid F, Rezaei B, Allafchian AR. NiFe2O4 nanoparticles decorated with MWCNTs as a selective and sensitive electrochemical sensor for the determination of epinephrine using differential pulse voltammetry. Anal Methods 2014;6(17): 6885-92. [DOI:10.1039/C4AY01232A]
36. Rajabzadeh M, Khalifeh R, Eshghi H, Bakavoli M. A facile hydrothermal synthesis of novel hollow triple-shell CuNiFe2O4 nanospheres with robust catalytic performance in the Suzuki-Miyaura coupling reaction. J Catal 2018;360: 261-9. [DOI:10.1016/j.jcat.2018.01.028]
37. Wang Z, Du Y, Liu Y, et al. Degradation of organic pollutants by NiFe 2 O 4/peroxymonosulfate: efficiency, influential factors and catalytic mechanism. Rsc Adv 2016;6(13): 11040-8. [DOI:10.1039/C5RA21117D]
38. Dong X, Ren B, Sun Z, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl Catal B: Environ 2019;253: 206-17. [DOI:10.1016/j.apcatb.2019.04.052]
39. Xu L, Chu W, Gan L. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chem Eng J 2015;263: 435-43. [DOI:10.1016/j.cej.2014.11.065]
40. Su S, Guo W, Leng Y, et al. Heterogeneous activation of Oxone by CoxFe3− xO4 nanocatalysts for degradation of rhodamine B. J Hazard Mater 2013;244: 736-42. [DOI:10.1016/j.jhazmat.2012.11.005] [PMID]
41. Tian R, Dong H, Chen J, et al. Amorphous Co3O4 Nanoparticles-Decorated Biochar as an Efficient Activator of Peroxymonosulfate for the Removal of Sulfamethazine in Aqueous Solution. Sep Purif Technol 2020: 117246. [DOI:10.1016/j.seppur.2020.117246]
42. Xu L, Chu W, Gan L. Environmental application of graphene-based CoFe 2 O 4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chem Eng J 2015;263: 435-43. [DOI:10.1016/j.cej.2014.11.065]
43. Tan C, Lu X, Cui X, et al. Novel activation of peroxymonosulfate by an easily recyclable VC@ Fe3O4 nanoparticles for enhanced degradation of sulfadiazine. Chem Eng J 2019;363: 318-28. [DOI:10.1016/j.cej.2019.01.145]
44. Yao Y, Yang Z, Sun H, Wang S. Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind Eng Chem Res 2012;51(46): 14958-65. [DOI:10.1021/ie301642g]
45. Gong C, Chen F, Yang Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem Eng J 2017;321: 222-32. [DOI:10.1016/j.cej.2017.03.117]
46. Deng J, Chen Y-J, Lu Y-A, et al. Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B. Environ Sci Pollut Res 2017;24(16): 14396-408. [DOI:10.1007/s11356-017-8941-5] [PMID]
47. Deng J, Shao Y, Gao N, et al. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water. J Hazard Mater 2013;262: 836-44. [DOI:10.1016/j.jhazmat.2013.09.049] [PMID]
48. Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem Eng J 2017;310: 41-62. [DOI:10.1016/j.cej.2016.10.064]
49. Al Hakim S, Jaber S, Eddine NZ, et al. Degradation of theophylline in a UV254/PS system: Matrix effect and application to a factory effluent. Chem Eng J 2020; 380:122478. [DOI:10.1016/j.cej.2019.122478]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 2 - ( 12-1400 ) برگشت به فهرست نسخه ها