1. 1. Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials. 2008; 160:265-88. [ DOI:10.1016/j.jhazmat.2008.03.045] [ PMID] 2. Nayak PS, Singh BK. Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination. 2007; 207:71-9. [ DOI:10.1016/j.desal.2006.07.005] 3. Astereki S, Jafari A. 2-cholorophenol removal from aqueous solutions using electro/persulfate process. yafte. 2015;17(3) [In Persian]. 4. Navarro AE, Cuizano NA, Lazo JC, Sun-Kou MR, Llanos BP. Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents. Journal of hazardous materials. 2009; 164:1439-46. [ DOI:10.1016/j.jhazmat.2008.09.077] [ PMID] 5. Rahman RA, Anuar N. Pentachlorophenol removal via adsorption and biodegradation. World Academy of Science, Engineering and Technology. 2009; 31:190-5. 6. Melin E, Ferguson J, Puhakka J. Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Applied microbiology and biotechnology. 1997; 47:675-82. [ DOI:10.1007/s002530050994] [ PMID] 7. Willis KJ, Ling N, Chapman MA. Effects of temperature and chemical formulation on the acute toxicity of pentachlorophenol to Simocephalus vetulus (Schoedler, 1858)(Crustacea: Cladocera). 1995. [ DOI:10.1080/00288330.1995.9516662] 8. Environmental Protection Agency (EPA). Available from: https://www.epa.gov/. 9. Zheng W, Wang X, Yu H, Tao X, Zhou Y, Qu W. Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environmental science & technology. 2011; 45:4668-75. [ DOI:10.1021/es1043563] [ PMID] 10. Rahmani A, Asgar G, Samiee F. Evaluation of Performance Catalytic Ozonation with Activated Alumina in the Removal of Pentachlorophenol from Aqueous Solutions and Study of the Intermediates. Avicenna J Clin Med. 2013; 20 (1):77-85 [In Persian]. 11. National Toxicology Program (NTP). Available from: https://ntp.niehs.nih.gov/. 12. Seyedi Z, Amooey AA, Amouei A, Tashakkorian H. Pentachlorophenol removal from aqueous solutions using Montmorillonite modified by Silane & Imidazole: kinetic and isotherm study. Journal of Environmental Health Science and Engineering. 2019:1-11. [ DOI:10.1007/s40201-019-00414-6] [ PMID] [ PMCID] 13. Edgehill RU, Finn RK. Activated sludge treatment of synthetic wastewater containing pentachlorophenol. Biotechnology and bioengineering. 1983; 25:2165-76. [ DOI:10.1002/bit.260250905] [ PMID] 14. 14. Tolardo V, García-Ballesteros S, Santos-Juanes L, Vercher R, Amat AM, Arques A, et al. Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron (II) Salts Concerted Action. Water, Air, & Soil Pollution. 2019; 230:140. [ DOI:10.1007/s11270-019-4189-7] 15. Pan J, Zou X, Wang X, Guan W, Li C, Yan Y, et al. Adsorptive removal of 2, 4-didichlorophenol and 2, 6-didichlorophenol from aqueous solution by β-cyclodextrin/attapulgite composites: Equilibrium, kinetics and thermodynamics. Chemical engineering journal. 2011; 166:40-8. [ DOI:10.1016/j.cej.2010.09.067] 16. Song W, Li J, Fu C, Wang Z, Zhang X, Yang J, et al. Kinetics and pathway of atrazine degradation by a novel method: Persulfate coupled with dithionite. Chemical Engineering Journal. 2019; 373:803-13. [ DOI:10.1016/j.cej.2019.05.110] 17. Jung B, Sivasubramanian R, Batchelor B, Abdel-Wahab A. Chlorate reduction by dithionite/UV advanced reduction process. International journal of environmental science and technology. 2017; 14:123-34. [ DOI:10.1007/s13762-016-1132-y] 18. Turi L, Rossky PJ. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chemical reviews. 2012; 112:5641-74. [ DOI:10.1021/cr300144z] [ PMID] 19. Romero A, Santos A, Vicente F, González C. Diuron abatement using activated persulphate: effect of pH, Fe (II) and oxidant dosage. Chemical Engineering Journal. 2010; 162:257-65. [ DOI:10.1016/j.cej.2010.05.044] 20. Wang C-W, Liang C. Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal. 2014; 254:472-8. [ DOI:10.1016/j.cej.2014.05.116] 21. Gao Y-q, Gao N-y, Deng Y, Yang Y-q, Ma Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal. 2012; 195:248-53. [ DOI:10.1016/j.cej.2012.04.084] 22. Maazinejad B, Mohammadnia O, Ali GA, Makhlouf AS, Nadagouda MN, Sillanpää M, et al. Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. Journal of Molecular Liquids. 2020; 298:112001. [ DOI:10.1016/j.molliq.2019.112001] 23. Asgari, Ghorban, Maleki, Sima, Seid Mohammadi, Abdolmutallab. Furfural removal from industrial wastewater using the electrocoagulation process: An experimental design using the Taguchi model. Journal of Mazandaran University of Medical Sciences. 2017; 27 (147): 306-21[In Persian]. 24. Asgari G, Seidmohammadi A, Rahmani AR, Samarghandi MR, Faraji H. Application of the UV/sulfoxylate/phenol process in the simultaneous removal of nitrate and pentachlorophenol from the aqueous solution. Journal of Molecular Liquids. 2020; 314:113581. [ DOI:10.1016/j.molliq.2020.113581] 25. Liang C, Su H-W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research. 2009; 48:5558-62. [ DOI:10.1021/ie9002848] 26. Orts F, Bonastre J, Fernández J, Cases F. Effect of chloride on the one step electrochemical treatment of an industrial textile wastewater with tin dioxide anodes. The case of trichromy procion HEXL. Chemosphere. 2020; 245:125396. [ DOI:10.1016/j.chemosphere.2019.125396] [ PMID] 27. Ramavandi B, Asgari G, Faradmal J, Sahebi S, Roshani B. Abatement of Cr (VI) from wastewater using a new adsorbent, cantaloupe peel: taguchi L 16 orthogonal array optimization. Korean Journal of Chemical Engineering. 2014; 31:2207-14. [ DOI:10.1007/s11814-014-0172-6] 28. Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Amirmahmoodi S, Ghafari-Nazari A. Taguchi optimization approach for Pb (II) and Hg (II) removal from aqueous solutions using modified mesoporous carbon. Journal of hazardous materials. 2011; 192:1046-55. [ DOI:10.1016/j.jhazmat.2011.06.006] [ PMID] 29. Liu Y, Zhang Y, Zhou A. A potential novel approach for in situ chemical oxidation based on the combination of persulfate and dithionite. Science of the Total Environment. 2019; 693:133-635. [ DOI:10.1016/j.scitotenv.2019.133635] [ PMID] 30. Rao Y, Qu L, Yang H, Chu W. Degradation of carbamazepine by Fe (II)-activated persulfate process. Journal of hazardous materials. 2014; 268:23-32. [ DOI:10.1016/j.jhazmat.2014.01.010] [ PMID] 31. Rodriguez S, Vasquez L, Costa D, Romero A, Santos A. Oxidation of Orange G by persulfate activated by Fe (II), Fe (III) and zero valent iron (ZVI). Chemosphere. 2014; 101:86-92. [ DOI:10.1016/j.chemosphere.2013.12.037] [ PMID] 32. Asgari G, Seid-Mohammadi A, Samargandi MR, Jamshidi R. Mineralization, kinetics, and degradation pathway of pentachlorophenol degradation from aqueous media via persulfate/dithionite process. Arabian Journal of Chemistry. 2021:103357. [ DOI:10.1016/j.arabjc.2021.103357] 33. Zhao J, Zhang Y, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology. 2010; 71:302-7. [ DOI:10.1016/j.seppur.2009.12.010] 34. Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrasonics Sonochemistry. 2016; 29:156-62. [ DOI:10.1016/j.ultsonch.2015.09.008] [ PMID] 35. Ghorbanian Z, Asgari G, Samadi MT, Seid-mohammadi A. Removal of 2, 4 dichlorophenol using microwave assisted nanoscale zero-valent copper activated persulfate from aqueous solutions: Mineralization, kinetics, and degradation pathways. Journal of Molecular Liquids. 2019; 296:111873. [ DOI:10.1016/j.molliq.2019.111873] 36. Pan X, Wei J, Zou M, Chen J, Qu R, Wang Z. Products distribution and contribution of (de) chlorination, hydroxylation and coupling reactions to 2, 4-dichlorophenol removal in seven oxidation systems. Water research. 2021; 194:116916. [ DOI:10.1016/j.watres.2021.116916] [ PMID] 37. Lin Y-T, Liang C, Chen J-H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere. 2011; 82:1168-72. [ DOI:10.1016/j.chemosphere.2010.12.027] [ PMID] 38. Gao Y-q, Gao N-y, Deng Y, Yin D-q, Zhang Y-s, Rong W-l, et al. Heat-activated persulfate oxidation of sulfamethoxazole in water. Desalination and Water Treatment. 2015; 56:2225-33. [ DOI:10.1080/19443994.2014.960471] 39. Asgari G, Sidmohammadi A, Rahmani AR, Samargandi MR, Faraji H. Efficient decomposition of pentachlorophenol by a high photon flux UV/sodium hydrosulfite: Kinetics, intermediates and associated transformation pathway. Optik. 2020; 218:164981. [ DOI:10.1016/j.ijleo.2020.164981]
|