[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Accepted articles :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing::
Open Access Policy::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 3 (5-2023) ::
jehe 2023, 10(3): 287-308 Back to browse issues page
Optimizing the growth of Spirulina platensis in the enriched water of the Persian Gulf
Elaheh Taghiyan * , Daryoosh Nabati Ahmadi , Mohammad Mohammad Roayaei Ardakani , Hamid Rajabi Memari
Ph.D. student of genetics and plant breeding, University of Tehran, Faculty of Agriculture and Natural Resources, Karaj, Iran
Abstract:   (252 Views)
Background: The use of Spirulina platensis has been expanded in various fields. The main goal of this research is to optimize the growth conditions of this microalgae to reduce costs and increase the benefits of its mass production in seawater. It is also feasible to lessen environmental pollution by producing more spirulina by discovering the best growing conditions for it through the enrichment of Persian Gulf water.
Methods: First, the growth conditions of Spirulina platensis were optimized based on three factors: temperature, light, and pH. The temperature factor included four treatments, the light factor included four treatments, and the PH factor included five treatments. Also, Spirulina platensis microalgae were cultured in optimal growth conditions in Persian Gulf water, seawater enriched with 5% Zarrouk, 10% Zarrouk, with urea, and pure Zarrouk culture medium.
Findings: The best temperature range for the growth of Spirulina platensis was 27–32 degrees Celsius. Also, the best growth was achieved in 16 hours of light and 8 hours of darkness; for the PH factor, the most appropriate value was determined between 10.72 and 11.47. Also, in the cultivation of Spirulina platensis, optimal conditions for the growth of Spirulina microalgae were obtained in the medium of Zarrouk, urea, 10% Zarrouk, 5% Zarrouk, and seawater, respectively.
Conclusion: Therefore, the growth of Spirulina platensis in Persian Gulf water is slow and shows little performance, and by enriching this water with the mentioned factors, the microalgae enter the logarithmic phase faster and show better performance.

Keywords: Spirulina platensis, Seawater, Culture media, environment, biodegradation
Full-Text [PDF 1030 kb]   (152 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/05/1 | Accepted: 2023/06/26 | Published: 2023/11/4
References
1. 1.Kumar M, Tomar M, Punia S, Dhakane-Lad J, Dhumal S, Changan S, et al. Plant-based proteins and their multifaceted industrial applications. LWT. 2022;154:112620. [DOI:10.1016/j.lwt.2021.112620]
2. Tomaselli, L. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology; Vonshak, A., Ed.; Taylor and Francis: London, UK, 1997; pp. 1-15.
3. Seyidoglu N, Inan S, Aydin C. A prominent superfood: Spirulina platensis. Superfood and functional food the development of superfoods and their roles as medicine. 2017 Feb 22;22:1-27. [DOI:10.5772/66118]
4. Panjaitan T, Quigley SP, McLennan SR, Swain AJ, Poppi DP. Spirulina (Spirulina platensis) algae supplementation increases microbial protein production and feed intake and decreases retention time of digesta in the rumen of cattle. Animal Production Science. 2014 Feb 14;55(4):535-43. [DOI:10.1071/AN13146]
5. Jung F, Krüger-Genge A, Waldeck P, Küpper JH. Spirulina platensis, a super food?. Journal of Cellular Biotechnology. 2019 Jan 1;5(1):43-54. [DOI:10.3233/JCB-189012]
6. Saranraj P, Sivasakthi S. Spirulina platensis-food for future: a review. Asian Journal of Pharmaceutical Science and Technology. 2014;4(1):26-33.
7. Boussiba S, Richmond AE. C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Archives of Microbiology. 1980 Mar;125:143-7. [DOI:10.1007/BF00403211]
8. Ragusa I, Nardone GN, Zanatta S, Bertin W, Amadio E. Spirulina for skin care: A bright blue future. Cosmetics. 2021 Jan 14;8(1):7. [DOI:10.3390/cosmetics8010007]
9. Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, Chang HW. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer cell international. 2013 Dec;13:1-7. [DOI:10.1186/1475-2867-13-55] [PMID] []
10. Somchit MN, Mohamed NA, Ahmad Z, Zakaria ZA, Shamsuddin L, Fauzee MS, Kadir AA. Anti-inflammatory and anti-pyretic properties of Spirulina platensis and Spirulina lonar: a comparative study. Pakistan journal of pharmaceutical sciences. 2014 Sep 1;27(5):1277-81.
11. Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Zadinová M, Zelenka J, Dvorák A, Kolár M, Strnad H. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology. 2014 Apr 21;13(2):273-83. [DOI:10.1016/S1665-2681(19)30891-9] [PMID]
12. Kaushik P, Chauhan A. In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian Journal of Microbiology. 2008 Sep;48:348-52. [DOI:10.1007/s12088-008-0043-0] [PMID] []
13. Kumar V, Bhatnagar AK, Srivastava JN. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. Journal of Medicinal Plants Research. 2011 Dec 30;5(32):7043-8. [DOI:10.5897/JMPR11.1175]
14. El-Baz FK, El-Senousy WM, El-Sayed AB, Kamel MM. In vitro antiviral and antimicrobial activities of Spirulina platensis extract. J. Appl. Pharm. Sci. 2013 Dec;3(12):52-6.
15. Haglund WD, Sorg MH. Human remains in water environments. Advances in forensic taphonomy: method, theory, and archaeological perspectives. 2002:201-18. [DOI:10.1201/9781420058352-13]
16. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature. 2008 Mar 20;452(7185):301-10. [DOI:10.1038/nature06599] [PMID]
17. Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics. 2016;6(13):2488. [DOI:10.7150/thno.16589] [PMID] []
18. Wu B, Tseng CK, Xiang W. Large-scale cultivation of Spirulina in seawater based culture medium.
19. Dineshkumar R, Narendran R, Sampathkumar P. Cultivation of Spirulina platensis in different selective media.
20. Parada JL, de Caire GZ, de Mulé MC, de Cano MM. Lactic acid bacteria growth promoters from Spirulina platensis. International journal of food microbiology. 1998 Dec 22;45(3):225-8. [DOI:10.1016/S0168-1605(98)00151-2] [PMID]
21. Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336. [DOI:10.1016/j.egyr.2019.02.009]
22. De Morais MG, Costa JA. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology letters. 2007 Sep;29:1349-52. [DOI:10.1007/s10529-007-9394-6] [PMID]
23. Andrade MR, Costa JA. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture. 2007 Apr 6;264(1-4):130-4. [DOI:10.1016/j.aquaculture.2006.11.021]
24. Vonshak A, Cheung SM, Chen F. Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. Journal of Phycology. 2000 Aug 26;36(4):675-9. [DOI:10.1046/j.1529-8817.2000.99198.x] [PMID]
25. El-Monem A, Ahmed M, Gharieb MM, Doman KM. Chemical constituents of zarrouk's medium affect growth, pigments and metabolites productions of Spirulina platensis. Egyptian Journal of Botany. 2021 Dec 1;61(3):681-91.
26. Amadeu SO, Sarmiento-Machado LM, Bartolomeu AR, Chaves MA, Romualdo GR, de Moura NA, Barbisan LF. Arthrospira (Spirulina) platensis feeding reduces the early stage of chemically induced rat colon carcinogenesis. British Journal of Nutrition. 2023 Feb;129(3):395-405. [DOI:10.1017/S0007114522001350] [PMID]
27. Herrero, M., Martín-Álvarez, P. J., Senorans, F. J., Cifuentes, A., & Ibáñez, E. (2005). Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chemistry, 93(3), 417-423. [DOI:10.1016/j.foodchem.2004.09.037]
28. Kim W, Park JM, Gim GH, Jeong SH, Kang CM, Kim DJ, Kim SW. Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and biosystems engineering. 2012 Jan;35:19-27. [DOI:10.1007/s00449-011-0612-1] [PMID]
29. Ogbonda KH, Aminigo RE, Abu GO. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource technology. 2007 Aug 1;98(11):2207-11. [DOI:10.1016/j.biortech.2006.08.028] [PMID]
30. Radmann EM, Reinehr CO, Costa JA. Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture. 2007 May 1;265(1-4):118-26. [DOI:10.1016/j.aquaculture.2007.02.001]
31. Daneshvar N, Khataee AR, Rasoulifard MH, Pourhassan M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials. 2007 May 8;143(1-2):214-9. [DOI:10.1016/j.jhazmat.2006.09.016] [PMID]
32. Oliveira MD, Monteiro MP, Robbs PG, Leite SG. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture international. 1999 Jul;7:261-75. [DOI:10.1023/A:1009233230706]
33. Arahou F, Hassikou R, Arahou M, Rhazi L, Wahby I. Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquaculture International. 2021 Oct;29(5):2009-20. [DOI:10.1007/s10499-021-00730-5]
34. Soni RA, Sudhakar K, Rana RS. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports. 2019 Nov 1;5:327-36. [DOI:10.1016/j.egyr.2019.02.009]
35. Çelekli A, Alslibi ZA, Üseyin Bozkurt H. Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Research. 2019 Dec 1;44:101710. [DOI:10.1016/j.algal.2019.101710]
36. Almomani F, Bhosale RR. Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization. Science of the Total Environment. 2021 Feb 10;755:142654. [DOI:10.1016/j.scitotenv.2020.142654] [PMID]
37. Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005 Mar 1;59(1):75-84. [DOI:10.1016/j.chemosphere.2004.10.005] [PMID]
38. Lee HY, Erickson LE, Yang SS. Kinetics and bioenergetics of lightlimited photoautotrophic growth of Spirulina platensis. Biotechnology and bioengineering. 1987 May;29(7):832-43. [DOI:10.1002/bit.260290705] [PMID]
39. Xiong J, Yu L, Zhang Z, Wang Y, Wang W, Yang H, Yan R, Zhu D. Intrinsic kinetic model of photoautotrophic microalgae based on chlorophyll fluorescence analysis. Mathematical Biosciences. 2019 Sep 1;315:108234. [DOI:10.1016/j.mbs.2019.108234] [PMID]
40. Nosratimovafagh A, Fereidouni AE, Krujatz F. Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life. 2022 Mar 3;12(3):371. [DOI:10.3390/life12030371] [PMID] []
41. Blanco-Vieites M, Suárez-Montes D, Delgado F, Álvarez-Gil M, Battez AH, Rodríguez E. Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry. Algal Research. 2022 May 1;64:102700. [DOI:10.1016/j.algal.2022.102700]
42. Ragaza, J.A., Hossain, M.S., Meiler, K.A., Velasquez, S.F. and Kumar, V., 2020. A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, 12(4), pp.2371-2395. [DOI:10.1111/raq.12439]
43. Sallam ER, Khairy HM, Elnouby MS, Fetouh HA. Sustainable electricity production from seawater using Spirulina platensis microbial fuel cell catalyzed by silver nanoparticles-activated carbon composite prepared by a new modified photolysis method. Biomass and Bioenergy. 2021 May 1;148:106038. [DOI:10.1016/j.biombioe.2021.106038]
44. Cheng Z, Kong W, Cheng Z, Qi H, Yang S, Zhang A, Niu S. A bibliometric-based analysis of the high-value application of Chlorella. 3 Biotech. 2020 Mar;10:1-4. [DOI:10.1007/s13205-020-2102-0] [PMID] []
45. Henrikson R. How this micro algae can transform your health and our planet.
46. Materassi R, Tredici M, Balloni W. Spirulina culture in sea-water. Applied microbiology and biotechnology. 1984 Jun;19:384-6. [DOI:10.1007/BF00454374]
47. Budi RM, Rahardja BS, Masithah ED. Potential concentration of heavy metal copper (cu) and microalgae growth Spirulina plantesis in culture media. InIOP Conference Series: Earth and Environmental Science 2020 Feb 1 (Vol. 441, No. 1, p. 012147). IOP Publishing. [DOI:10.1088/1755-1315/441/1/012147]
48. Ayala F. Guide Spirulina cultivation. Microorganisms in Biotechnology at photoautotrophs. 1998:3-20.
49. Ciferri O. Spirulina, the edible microorganism. Microbiological reviews. 1983 Dec;47(4):551-78. [DOI:10.1128/mr.47.4.551-578.1983] [PMID] []
50. Ikeda IK, Sydney EB, Sydney AC. Potential application of Spirulina in dermatology. Journal of Cosmetic Dermatology. 2022 Oct;21(10):4205-14. [DOI:10.1111/jocd.14997] [PMID]
51. Kaamoush M, El-Agawany N, Salhin HE, El-Zeiny A. Monitoring effect of nickel, copper, and zinc on growth and photosynthetic pigments of Spirulina platensis with suitability investigation in Idku Lake. Environmental Science and Pollution Research. 2022 Nov;29(52):78942-59. [DOI:10.1007/s11356-022-21328-1] [PMID] []
52. Markou G, Georgakakis D, Plagou K, Salakou G, Christopoulou N. Balanced waste management of 2-and 3-phase olive oil mills in relation to the seed oil extraction plant. Terr. Aquat. Environ. Toxicol. 2010;4(1):109-12.
53. Wu B, Tseng C, Xiang W. Large-scale Cultivation of Spirulina in Seawater Based Culture Medium. 1993;36(2): 99-102. [DOI:10.1515/botm.1993.36.2.99]
54. Thevarajah B, Nishshanka GK, Premaratne M, Nimarshana PH, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochemical Engineering Journal. 2022 Jul 13:108541. [DOI:10.1016/j.bej.2022.108541]
55. Leema JM, Kirubagaran R, Vinithkumar NV, Dheenan PS, Karthikayulu S. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource technology. 2010 Dec 1;101(23):9221-7. [DOI:10.1016/j.biortech.2010.06.120] [PMID]
56. Jiang L, Yu S, Pei H. Seawater-cultured Spirulina subsalsa as a more promising host for phycocyanin production than Arthrospira platensis. Algal Research. 2021 Dec 1;60:102545. [DOI:10.1016/j.algal.2021.102545]
57. Hosseinzade K, Ganjian Khenari A, Jafari SM. Effects of water enrichment on microalgae Spirulina platensis growth parameters in the southern Caspian Sea. Aquatic Animals Nutrition. 2015 Sep 23;1(2):1-1. In Persian
58. Kardovani P. Aquatic ecosystems of Iran, Caspian Sea (Caspian Sea). Tehran: Qos Publishing. 1995 : 312-315. In Persian
59. Dineshkumar R, Narendran R, Sampathkumar P. Cultivation of Spirulina platensis in different selective media.
60. Uddin, A.F.M.J., Ifaz, M.I., Husna, M.A., Sakib, I. and Rakibuzzaman, M., 2020. Comparative growth analysis of Spirulina platensis using urea as a nitrogen substitute for NaNO3. Int. J. Bus. Soc. Sci. Res, 8(2), pp.76-80.
61. Shanthi G, Premalatha M, Anantharaman N. Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina. Journal of Cleaner Production. 2021 Apr 20;294:126106. [DOI:10.1016/j.jclepro.2021.126106]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghiyan E, Nabati Ahmadi D, Mohammad Roayaei Ardakani M, Rajabi Memari H. Optimizing the growth of Spirulina platensis in the enriched water of the Persian Gulf. jehe 2023; 10 (3) :287-308
URL: http://jehe.abzums.ac.ir/article-1-974-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (5-2023) Back to browse issues page
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645