1. Shiklomanov IA. Appraisal and assessment of world water resources. Water Int 2000; 25(1): 11-32. [ DOI:10.1080/02508060008686794] 2. Sobhanardakani S, Maanijou M, Asadi H. Investigation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain. Sci J Hamadan Univ Med Sci 2015; 21(4): 319-29 (In Persian). 3. Sobhanardakan S, Taghavi L, Shahmoradi B, et al. Groundwater quality assessment using the water quality pollution indices in Toyserkan Plain. Environ Health Eng Manage J 2017; 4(1): 21-7. [ DOI:10.15171/EHEM.2017.04] 4. Makarigakis AK, Jimenez-Cisneros BE. UNESCO's contribution to face global water challenges. Water 2019; 11(2): 388. [ DOI:10.3390/w11020388] 5. Yari AR, Sobhanardakan S. Water quality assessment of groundwater resources in Qaleeh Shahin Plain based on Cd and HEI. Int Arch Health Sci 2016; 3(3): 101-06. [ DOI:10.18869/IAHS.3.3.101] 6. Sobhanardakani S. Evaluation of the water quality pollution indices for groundwater resources of Ghahavand Plain, Hamedan Province, western Iran. Iran J Toxicol 2016; 10(3): 35-40. [ DOI:10.29252/arakmu.10.3.35] 7. Sabzevari Y, Zeinivand H. Evaluation of groundwater quality for different uses, case study: Delfan plain. J Geogr Space 2022; 22(78): 55-71 (In Persian). 8. Askari J, Egdernezhad A. Groundwater modeling using artificial intelligence methods (Case study: Dezful-Andimeshk plain). 2022; 8(2): 160-71 (In Persian). 9. Alizamir M, Sobhanardakani S. An artificial neural network - particle swarm optimization (ANN- PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur J Health Sci 2018; 10(2): e67544. [ DOI:10.5812/jjhs.67544] 10. Aldhyani THH, Al-Yaari M, Alkahtani H, et al. Water quality prediction using artificial intelligence algorithms. Appl Bionic Biomechanic 2020; 2020: 6659314. [ DOI:10.1155/2020/6659314] [ PMID] [ ] 11. Alizamir M, Sobhanardakani S. A comparison of performance of artificial neural networks for prediction of heavy metals concentration in groundwater resources of Toyserkan Plain. Avicenna J Environ Health Eng 2017; 4(1): e11792. [ DOI:10.5812/ajehe.11792] 12. Al-Adhaileh MH, Aldhyani THH, Alsaade FW, et al. Groundwater quality: The application of artificial intelligence. J Environ Publ Health 2022; 2022: 8425798. [ DOI:10.1155/2022/8425798] [ PMID] [ ] 13. Rajaee T, Pouraslan F. Temporal and spatial forecast of Davarzan plain groundwater level. Hydrogeomorphology 2015; 2(4): 1-19 (In Persian). 14. Alizamir M, Sobhanardakani S, Hasanalipour Shahrabadi A. Prediction of heavy metals concentration in the groundwater resources in Razan Plain: Extreme learning machine vs. artificial neural network and multivariate adaptive regression spline. Annal Mil Health Sci Res 2019; 17(4): e98554. [ DOI:10.5812/amh.98554] 15. Farooq MU, Zafar AM, Raheem W, et al. Assessment of algorithm performance on predicting total dissolved solids using artificial neural network and multiple linear regression for the groundwater data. Water, 2022; 14(13): 2002. [ DOI:10.3390/w14132002] 16. Che Nordin NF, Mohd NS, Koting S, et al. Groundwater quality forecasting modelling using artificial intelligence: A review. Groundwater Sustain Dev 2021; 14: 100643. [ DOI:10.1016/j.gsd.2021.100643] 17. Ghobadi A, Cheraghi M, Sobhanardakani S, et al. Groundwater quality modeling using a novel hybrid data-intelligence model based on gray wolf optimization algorithm and multi-layer perceptron artificial neural network: a case study in Asadabad Plain, Hamedan, Iran. Environ Sci Pollut Res 2022; 29(6): 8716-30. [ DOI:10.1007/s11356-021-16300-4] [ PMID] 18. Bui DT, Khosravi K, Tiefenbacher J, et al. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci Total Environ 2020; 721: 137612. [ DOI:10.1016/j.scitotenv.2020.137612] [ PMID] 19. Alizamir M, Kazemi Z, Kazemi Z, et al. Investigating landfill leachate and groundwater quality prediction using a Robust Integrated Artificial Intelligence Model: Grey Wolf Metaheuristic Optimization Algorithm and Extreme Learning Machine. Water 2023; 15(13): 2453. [ DOI:10.3390/w15132453] 20. Abbasi Teshnizi F, Nouri Emamzadehei MM. Assessment of groundwater quality in Kaboudarahang Plain using factor and cluster analysis. Environ Water Eng 2017; 3(3): 272-9 (In Persian). 21. Emami S, Noruzi-Sarkarabad R, Choopan Y. Use of artificial neural network and imperialist competitive algorithm to evaluate the groundwater quality of Jolfa Plain for various uses. 2021; 53(1): 313-30 (In Persian). 22. Sadatinejadi, SJ, Ghasemi L, Yousefi H. Redesign of groundwater monitoring network Kuhdasht Aquifer. Ecohydrology 2019; 5(4): 1255-66 (In Persian). 23. Emami H, Emami S. Presentating a New Approach for evaluating the hydro-geochemical quality of groundwater using Swarm Intelligence Algorithms. 2019; 6(1): 177-90 (In Persian). 24. Bahrami F, Egdernezhad A. Comparison of Artificial Neural Network and Kriging models in predicting groundwater quality parameters (SAR, TDS and EC) of Dezful Andimeshk plain. J Res Environ Health 2023; 8(4): 365-77 (In Persian). 25. Majumder P, Eldho TI. Artificial Neural Network and Grey Wolf Optimizer based Surrogate Simulation-Optimization Model for groundwater remediation. Water Res Manage 2020; 34(2): 763-83. [ DOI:10.1007/s11269-019-02472-9] 26. Tikhamarine Y, Souag-Gamane D, Najah Ahmed A, et al. Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm. J Hydrol 2020; 582, 124435. [ DOI:10.1016/j.jhydrol.2019.124435] 27. Moayedi H, Salari M, Dehrashid AA, et al. Groundwater quality evaluation using hybrid model of the multi-layer perceptron combined with neural-evolutionary regression techniques: case study of Shiraz plain. Stoch Environ Res Risk Assess 2023; 37(8): 2961-76. [ DOI:10.1007/s00477-023-02429-w] 28. Bahmani O, Zali A. Investigation and determination of the spatial distribution of nitrate and electrical conductivity in groundwater by geostatistical method (Case study: Kabudrahng Plain). J Environ Sci Technol 2021; 23(5): 143-57 (In Persian). 29. Göçken M, Özçalıcı M, Boru A, et al. Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Sys Appl 2016; 44: 320-31. [ DOI:10.1016/j.eswa.2015.09.029] 30. Wang J, Wang J. Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing 2015; 156: 68-78. [ DOI:10.1016/j.neucom.2014.12.084] 31. Chi T. Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. J Retail Consum Serv 2018; 44, 274-84. [ DOI:10.1016/j.jretconser.2018.07.019] 32. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng softw 2014; 69: 46-61. [ DOI:10.1016/j.advengsoft.2013.12.007] 33. Jafarzadeh A, Khashei Siuki A. Performance examination of optimization model of groundwater monitoring network based on Gray wolf and Neural network (GNM) (Case study: Birjand plain). J Irrig Water Eng 2018; 8(3): 121-39 (In Persian). 34. Ahaninjan K, Egdernezhad A. Modeling qualitative parameters of SAR, EC, and TDS in groundwater using optimized artificial neural network model (Case study: Behbahan Plain). 2020; 6(2): 161-72 (In Persian).
|