1. KHODADADI M, Samadi M, RAHMANI AR, et al. DETERMINATION OF ORGANOPHOSPHOROUS AND CARBAMAT PESTICIDES RESIDUE IN DRINKINGWATER RESOURCES OF HAMADAN IN 2007. 2010.
2. Al-Qurainy F, Abdel-Megeed A. Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Applied Sciences Journal 2009;6(7): 987-98.
3. Abdollahzadeh G, Sharifzadeh MS, Damalas CA. Perceptions of the beneficial and harmful effects of pesticides among Iranian rice farmers influence the adoption of biological control. Crop Protection 2015;75: 124-31. [
DOI:10.1016/j.cropro.2015.05.018]
4. Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environmental science & technology 2008;42(16): 5843-59. [
DOI:10.1021/es8006904]
5. Karyab H, Mahvi AH, Nazmara S, Bahojb A. Determination of water sources contamination to diazinon and malathion and spatial pollution patterns in Qazvin, Iran. Bulletin of environmental contamination and toxicology 2013;90: 126-31. [
DOI:10.1007/s00128-012-0880-8]
6. Ahmed FE. Analyses of pesticides and their metabolites in foods and drinks. TrAC Trends in Analytical Chemistry 2001;20(11): 649-61. [
DOI:10.1016/S0165-9936(01)00121-2]
7. Hoppin JA, Adgate JL, Eberhart M, et al. Environmental exposure assessment of pesticides in farmworker homes. Environmental Health Perspectives 2006;114(6): 929-35. [
DOI:10.1289/ehp.8530]
8. Fakhri H, Mahjoub A, Khavar AC. Synthesis and characterization of ZnO/CuInS2 nanocomposite and investigation of their photocatalytic properties under visible light irradiation. Applied surface science 2014;318: 65-73. [
DOI:10.1016/j.apsusc.2014.01.024]
9. Asim N, Syuhami M, Badiei M, Yarmo MA. WO3 modification by synthesis of nanocomposites. Apcbee Procedia 2014;9: 175-80. [
DOI:10.1016/j.apcbee.2014.01.031]
10. Tang C, Liu E, Wan J, et al. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst. Applied Catalysis B: Environmental 2016;181: 707-15. [
DOI:10.1016/j.apcatb.2015.08.045]
11. Hummers Jr WS, Offeman RE. Preparation of graphitic oxide. Journal of the american chemical society 1958;80(6): 1339-. [
DOI:10.1021/ja01539a017]
12. Ding J, Yang Z, He C, et al. UiO-66 (Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation. Journal of colloid and interface science 2017;497: 126-33. [
DOI:10.1016/j.jcis.2017.02.060]
13. Qiu J, Zhang P, Ling M, et al. Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS applied materials & interfaces 2012;4(7): 3636-42. [
DOI:10.1021/am300722d]
14. Zhu X-D, Wang Y-J, Sun R-J, Zhou D-M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 2013;92(8): 925-32. [
DOI:10.1016/j.chemosphere.2013.02.066]
15. Mahamallik P, Saha S, Pal A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chemical Engineering Journal 2015;276: 155-65. [
DOI:10.1016/j.cej.2015.04.064]
16. Xu X, Liu R, Cui Y, et al. PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols. Applied Catalysis B: Environmental 2017;210: 484-94. [
DOI:10.1016/j.apcatb.2017.04.021]
17. Nezamzadeh-Ejhieh A, Shirzadi A. Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 2014;107: 136-44. [
DOI:10.1016/j.chemosphere.2014.02.015]