دوره 12، شماره 2 - ( 12-1403 )                   جلد 12 شماره 2 صفحات 151-137 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirvani F, Morad-Alizadeh S, Rezaei M. Investigation of Advanced Oxidation Processes Based on Ultraviolet Radiation for the Removal of Phthalate Compounds from Aquatic Environments. J Environ Health Eng 2025; 12 (2) :137-151
URL: http://jehe.abzums.ac.ir/article-1-1077-fa.html
شیروانی فاطمه، مرادعلی‌زاده سعیده، رضایی مهدی. بررسی روش‌های اکسیداسیون پیشرفته بر پایه اشعه فرابنفش جهت حذف ترکیبات فتالات از محیط‌ های آبی. مجله مهندسی بهداشت محیط. 1403; 12 (2) :137-151

URL: http://jehe.abzums.ac.ir/article-1-1077-fa.html


مرکز تحقیقات مهندسی بهداشت محیط، دانشگاه علوم پزشکی کرمان، کرمان، ایران & گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی کرمان، کرمان، ایران
چکیده:   (215 مشاهده)

زمینه و هدف: فتالات‌ها از جمله مهم‌ترین آلاینده‌های صنعتی بوده که سلامت انسان را به خطر می‌اندازند. این ترکیبات مختل‌کننده غدد درون‌ریز، معمولاً در ساخت اثاثیه و ظروف پلاستیکی کاربرد دارند که از طریق جریان فاضلاب، به راحتی وارد منابع آب می‌شوند. از میان روش‌های حذف این نوع آلاینده از محیط‌های آبی، روش‌های اکسیداسیون پیشرفته فتوشیمیایی، توجه زیادی را به خود جلب کرده‌است؛ لذا هدف از انجام مطالعه حاضر، بررسی و مقایسه روش‌های اکسیداسیون پیشرفته بر پایه اشعه فرابنفش جهت حذف ترکیبات فتالات از محیط‌های آبی بود.

مواد و روش ها: برای انجام مطالعه مروری حاضر، پس از جست‌وجوی کلیدواژه‌ها در پایگاه‌های داده «ScienceDirect, SID, Magiran, PubMed, Wiley, Springer»، از ژانویه سال ۲۰۱۳ تا دسامبر ۲۰۲۴ میلادی، جمعاً ۶۹۳ مقاله یافت شد که پس از انجام مراحل غربالگری و بررسی کامل مقالات، در نهایت تعداد ۵۴ مقاله ثبت و در مطالعه استفاده شد. معیار ورود مقالات به مطالعه؛ شامل بررسی نحوه ورود ترکیبات فتالات به محیط زیست، اثرات بهداشتی و نیز تشریح فرایندهای اکسیداسیون پیشرفته در کنار بررسی مزایا و معایب این فرایندها بود.

یافته ها: تابش اشعه فرابنفش می‌تواند به تنهایی ترکیبات فتالات را تا حدودی از بین ببرد. با این حال، این تابش در برابر حذف بسیاری از این ترکیبات بی‌اثر است؛ بنابراین، حذف مؤثر ترکیبات فتالات با این روش، مستلزم ترکیب تابش اشعه ماوراء بنفش با اکسیدان‌ها است. روشهای مختلفی از فرایند اکسیداسیون پیشرفته بر پایه اشعه فرابنفش وجود دارد که عمدتاً شاملUV/H2O2 ,UV/H2O2/Fe+3, UV/Cl-, UV/persulfate, UV/H2O2/Fe+2  UV/Cl-cyanurates ,oxalate, UV/TiO2, UV/Cl-/TiO2, UV/O3 می‌شوند؛ اما به طور کلی، می‌توان گفت که فرایند «فرابنفش/کلر-سیانورات» به عنوان اقتصادی‌ترین فرایند اکسیداسیون پیشرفته بر پایه اشعه فرابنفش شناخته می‌شود.

نتیجه گیری: پس از بررسی خصوصیات و عملکرد فرایندهای مذکور برای حذف ترکیبات فتالات از محیط‌های آبی، در نهایت فرایند «فرابنفش/کلر-سیانورات» به دلیل مصرف انرژی کمتر، مقرون‌به‌صرفه اقتصادی بودن و خصوصاً راندمان حدف تقریباً ۱۰۰ درصد پیشنهاد گردید.

متن کامل [PDF 1206 kb]   (70 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: تخصصي
دریافت: 1403/9/5 | پذیرش: 1403/11/21 | انتشار: 1403/12/12

فهرست منابع
1. Chen M, Niu Z, Zhang X, Zhang Y. Pollution characteristics and health risk of sixty-five organics in one drinking water system: PAEs should be prioritized for control. Chemosphere. 2024;350:141171. [DOI:10.1016/j.chemosphere.2024.141171]
2. Chaudhry FN, Malik M. Factors affecting water pollution: a review. Journal of Ecosystem Ecography. 2017;7(1):225-31.
3. Canpolat Ö. THE GLOBAL PROBLEM: WATER POLLUTION AND HEAVY METALS-A. Research And Evaluations In Agriculture, Forestry And Aquaculture. 2023:119.
4. Ghosh S, Sahu M. Phthalate pollution and remediation strategies: a review. Journal of Hazardous Materials Advances. 2022;6:100065. [DOI:10.1016/j.hazadv.2022.100065]
5. Kumari M, Pulimi M. Phthalate esters: occurrence, toxicity, bioremediation, and advanced oxidation processes. Water Science & Technology. 2023;87(9):2090-115. [DOI:10.2166/wst.2023.119]
6. Tran HT, Lin C, Bui X-T, Nguyen MK, Cao NDT, Mukhtar H, et al. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresource Technology. 2022;344:126249. [DOI:10.1016/j.biortech.2021.126249]
7. Zhu Q, Jia J, Zhang K, Zhang H, Liao C. Spatial distribution and mass loading of phthalate esters in wastewater treatment plants in China: An assessment of human exposure. Science of The Total Environment. 2019;656:862-9. [DOI:10.1016/j.scitotenv.2018.11.458]
8. Sun S, Shen J, Li B, Geng J, Ma L, Qi H, et al. The spatiotemporal distribution and potential risk assessment of 19 phthalate acid esters in wastewater treatment plants in China. Environmental Science and Pollution Research. 2021;28(47):67280-91. [DOI:10.1007/s11356-021-15365-5]
9. Zhang Y-J, Guo J-L, Xue J-c, Bai C-L, Guo Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. Environmental Pollution. 2021;291:118106. [DOI:10.1016/j.envpol.2021.118106]
10. Zheng X, Lu G, Liu J, Jiang R. Phthalate esters in municipal sewage treatment plants: occurrence level, removal rate and optimum combination technology. Frontiers in Environmental Engineering. 2023;2:1208689. [DOI:10.3389/fenve.2023.1208689]
11. Elaiyaraja A, Mayilsamy M, Vimalkumar K, Nikhil NP, Noorani PM, Bommuraj V, et al. Aquatic and human health risk assessment of Humanogenic Emerging Contaminants (HECs), Phthalate Esters from the Indian Rivers. Chemosphere. 2022;306:135624. [DOI:10.1016/j.chemosphere.2022.135624]
12. Al-Saleh I, Elkhatib R, Al-Rajoudi T, Al-Qudaihi G. Assessing the concentration of phthalate esters (PAEs) and bisphenol A (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia. Science of the Total Environment. 2017;578:440-51. [DOI:10.1016/j.scitotenv.2016.10.207]
13. Abtahi M, Dobaradaran S, Torabbeigi M, Jorfi S, Gholamnia R, Koolivand A, et al. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. Environmental Research. 2019;173:469-79. [DOI:10.1016/j.envres.2019.03.071]
14. Kingsley O, Witthayawirasak B. Occurrence, Ecological and Health Risk Assessment of Phthalate Esters in Surface Water of U-Tapao Canal, Southern, Thailand. Toxics. 2020;8(3). [DOI:10.3390/toxics8030058]
15. Nas B, Ateş H, Dolu T, Yel E, Argun ME, Koyuncu S, et al. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. Chemosphere. 2022;295:133864. [DOI:10.1016/j.chemosphere.2022.133864]
16. Becky Miriyam I, Anbalagan K, Magesh Kumar M. Phthalates removal from wastewater by different methods-a review. Water Science and Technology. 2022;85(9):2581-600. [DOI:10.2166/wst.2022.133]
17. Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports. 2015;1:167-76. [DOI:10.1007/s40726-015-0015-z]
18. Ponnusami AB, Sinha S, Ashokan H, Paul MV, Hariharan SP, Arun J, et al. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environmental research. 2023;237:116944. [DOI:10.1016/j.envres.2023.116944]
19. Li J, Zhang Z, Xiang Y, Jiang J, Yin R. Role of UV-based advanced oxidation processes on NOM alteration and DBP formation in drinking water treatment: A state-of-the-art review. Chemosphere. 2023;311:136870. [DOI:10.1016/j.chemosphere.2022.136870]
20. Zhang L, Bi X, Wang Z, Ertürk AS, Elmaci G, Zhao H, et al. Brønsted-acid sites promoted degradation of phthalate esters over MnO2: Mineralization enhancement and aquatic toxicity assessment. Chemosphere. 2022;291:132740. [DOI:10.1016/j.chemosphere.2021.132740]
21. Amiri H, Martinez SS, Shiri MA, Soori MM. Advanced oxidation processes for phthalate esters removal in aqueous solution: a systematic review. Reviews on Environmental Health. 2023;38(2):197-218. [DOI:10.1515/reveh-2021-0147]
22. Rudolf P, Maršálek B, Maršálková E, Krajcar I, Pochylý F, Fialová S, et al., editors. Removal of biological and chemical contaminants using ozonization and UV photolysis. AIP Conference Proceedings; 2023: AIP Publishing. [DOI:10.1063/5.0122248]
23. Hutagalung S, Muchlis I, Khotimah K, editors. Textile wastewater treatment using advanced oxidation process (AOP). IOP conference series: materials science and engineering; 2020: IOP Publishing. [DOI:10.1088/1757-899X/722/1/012032]
24. Zhang Y, Zhao Y-G, Maqbool F, Hu Y. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. Journal of water process engineering. 2022;45:102496. [DOI:10.1016/j.jwpe.2021.102496]
25. Mansouri L, Tizaoui C, Geissen S-U, Bousselmi L. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water. Journal of Hazardous Materials. 2019;363:401-11. [DOI:10.1016/j.jhazmat.2018.10.003]
26. Medellin-Castillo NA, Ocampo-Pérez R, Leyva-Ramos R, Sanchez-Polo M, Rivera-Utrilla J, Méndez-Díaz JD. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Science of the Total Environment. 2013;442:26-35. [DOI:10.1016/j.scitotenv.2012.10.062]
27. Pirsaheb M, Nouri M, Hossini H. Advanced oxidation processes for the removal of phthalate esters (PAEs) in aqueous matrices: a review. Reviews on environmental health. 2023;38(2):265-79. [DOI:10.1515/reveh-2022-0001]
28. Shokri A, Hosseini J, Fard MS. Treatment of Synthetic Wastewater Containing Diethyl Phthalate through Photo-Fenton Method by Box-Behnken Design. Archives of Hygiene Sciences. 2020;9(2). [DOI:10.29252/ArchHygSci.9.2.121]
29. Nong Y-J, Zhang Y-L, Hübner U, Wang W-L, Wu Q-Y, Huang N, et al. Roles of radical species in vacuum-UV/UV/peroxydisulfate advanced oxidation processes and contributions of the species to contaminant degradation at different water depths. Journal of Hazardous Materials. 2023;446:130660. [DOI:10.1016/j.jhazmat.2022.130660]
30. Zarean M, Bina B, Ebrahimi A, Pourzamani H, Esteki F. Degradation of di-2-ethylhexyl phthalate in aqueous solution by advanced oxidation process. International Journal of Environmental Health Engineering. 2015;4(1):34. [DOI:10.4103/2277-9183.170701]
31. Farzanehsa M, Vaughan LC, Zamyadi A, Khan SJ. Comparison of UV‐Cl and UV‐H2O2 advanced oxidation processes in the degradation of contaminants from water and wastewater: A review. Water and Environment Journal. 2023;37(4):633-43. [DOI:10.1111/wej.12868]
32. Rodrigues-Silva F, Santos C, Marrero J, Montes R, Quintana JB, Rodil R, et al. Continuous UV-C/H2O2 and UV-C/Chlorine applied to municipal secondary effluent and nanofiltration retentate: Removal of contaminants of emerging concern, ecotoxicity, and reuse potential. Chemosphere. 2024;361:142355. [DOI:10.1016/j.chemosphere.2024.142355]
33. Song C, Wang L, Ren J, Lv B, Sun Z, Yan J, et al. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters. Environmental Science and Pollution Research. 2016;23(3):2640-50. [DOI:10.1007/s11356-015-5481-8]
34. Wang C, Zeng T, Gu C, Zhu S, Zhang Q, Luo X. Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO2, and UV-Vis/Bi2WO6 Systems. Frontiers in Chemistry. 2019;7. [DOI:10.3389/fchem.2019.00852]
35. Zhang H-C, Liu Y-L, Wang L, Li Z-Y, Lu X-H, Yang T, et al. Enhanced Radical Generation in an Ultraviolet/Chlorine System through the Addition of TiO2. Environmental Science & Technology. 2021;55(17):11612-23. [DOI:10.1021/acs.est.0c08785]
36. Kabdaşlı I, Olmez-Hanci T, Tünay O, Gülhan D, Ecer Ç. Application of response surface methodology for dimethyl phthalate treatment via H2O2/UV-C process. Desalination and Water Treatment. 2016;57(54):26165-73. [DOI:10.1080/19443994.2016.1159990]
37. Carotenuto M, Libralato G, Gürses H, Siciliano A, Rizzo L, Guida M, et al. Nonylphenol deca-ethoxylate removal from wastewater by UV/H2O2: Degradation kinetics and toxicity effects. Process Safety and Environmental Protection. 2019;124:1-7. [DOI:10.1016/j.psep.2019.01.030]
38. Wu Y, Deng L, Bu L, Zhu S, Shi Z, Zhou S. Degradation of diethyl phthalate (DEP) by vacuum ultraviolet process: influencing factors, oxidation products, and toxicity assessment. Environmental Science and Pollution Research International. 2019;26(6):5435-44. [DOI:10.1007/s11356-018-3914-x]
39. Mondal K, Sharma Iitk A. Photocatalytic Oxidation of Pollutant Dyes in Wastewater by TiO2 and ZnO nano-materials-A Mini-review. Nanoscience & Technology for Mankind. 2014:36-72.
40. Konstantinou IK, Antonopoulou M, Lambropoulou DA. Transformation Products of Emerging Contaminants Formed during Advanced Oxidation Processes. Transformation Products of Emerging Contaminants in the Environment. 2014:179-228. [DOI:10.1002/9781118339558.ch06]
41. Lee C, Kim H-H, Park NB. Chemistry of persulfates for the oxidation of organic contaminants in water. Membrane Water Treatment. 2018;9:405-19.
42. Zhou Z, Liu X, Sun K, Lin C, Ma J, He M, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chemical Engineering Journal. 2019;372:836-51. [DOI:10.1016/j.cej.2019.04.213]
43. Tichonovas M, Krugly E, Jankunaite D, Racys V, Martuzevicius D. Ozone-UV-catalysis based advanced oxidation process for wastewater treatment. Environmental Science and Pollution Research. 2017;24(21):17584-97. [DOI:10.1007/s11356-017-9381-y]
44. Yang S, Song Y, Chang F, Wang K. Evaluation of chemistry and key reactor parameters for industrial water treatment applications of the UV/O3 process. Environmental Research. 2020;188:109660. [DOI:10.1016/j.envres.2020.109660]
45. Zarean M, Bina B, Ebrahimi A, Pourzamani H, Esteki F. Degradation of di-2-ethylhexyl phthalate in aqueous solution by advanced oxidation process. International Journal of Environmental Health Engineering. 2015;4(1). [DOI:10.4103/2277-9183.170701]
46. Chuang Y-H, Shi H-J. UV/chlorinated cyanurates as an emerging advanced oxidation process for drinking water and potable reuse treatments. Water Research. 2022;211:118075. [DOI:10.1016/j.watres.2022.118075]
47. Zhang Y, Wang H, Li Y, Wang B, Huang J, Deng S, et al. Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Research. 2020;183:116115. [DOI:10.1016/j.watres.2020.116115]
48. Chen B, Song J, Yang L, Bai Q, Li R, Zhang Y, et al. Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation. Biodegradation. 2015;26(6):431-41. [DOI:10.1007/s10532-015-9744-3]
49. Esrafili A, Rezaei Kalantary R, Azari A, Ahmadi E, Gholami M. Removal of diethyl phthalate from aqueous solution using persulfate-based (UV/Na2S2O8/Fe2+) advanced oxidation process. Journal of Mazandaran University of Medical Sciences. 2016;25(132):122-35.
50. Johari ND, Rosli ZM, Juoi JM, Yazid SA. Comparison on the TiO2 crystalline phases deposited via dip and spin coating using green sol-gel route. Journal of Materials Research and Technology. 2019;8(2):2350-8. [DOI:10.1016/j.jmrt.2019.04.018]
51. Wang C, Zeng T, Gu C, Zhu S, Zhang Q, Luo X. Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO(2), and UV-Vis/Bi(2)WO(6) Systems. Frontiers in Chemistry. 2019;7:852. [DOI:10.3389/fchem.2019.00852]
52. Wardenier N, Liu Z, Nikiforov A, Van Hulle SW, Leys C. Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs. Chemosphere. 2019;234:715-24. [DOI:10.1016/j.chemosphere.2019.06.033]
53. Song C, Wang L, Ren J, Lv B, Sun Z, Yan J, et al. Comparative study of diethyl phthalate degradation by UV/H 2 O 2 and UV/TiO 2: kinetics, mechanism, and effects of operational parameters. Environmental Science and Pollution Research. 2016;23:2640-50. [DOI:10.1007/s11356-015-5481-8]
54. Lovato ME, Gilliard MB, Cassano AE, Martín CA. Kinetics of the degradation of n-butyl benzyl phthalate using O₃/UV, direct photolysis, direct ozonation and UV effects. Environmental Science Pollution Research. 2015;22(2):909-17. [DOI:10.1007/s11356-014-2796-9]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله مهندسی بهداشت محیط می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 All Rights Reserved | Journal of Environmental Health Engineering

Designed & Developed by : Yektaweb