دوره 13، شماره 1 - ( 1-1404 )                   جلد 13 شماره 1 صفحات 19-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seidi S, Azizi M. Magnetic Graphene Oxide Modified with Sulfur for Selective Removal of Mercury from Water and Wastewater Samples followed by FI-CV-AAS. J Environ Health Eng 2025; 13 (1) :1-19
URL: http://jehe.abzums.ac.ir/article-1-1099-fa.html
صیدی شهرام، عزیزی مریم. گرافن اکساید مغناطیسی اصلاح شده با گوگرد به منظور حذف گزینش‌پذیر جیوه از نمونه‌های آب و پساب و اندازه‌گیری به روش FI-CV-AAS. مجله مهندسی بهداشت محیط. 1404; 13 (1) :1-19

URL: http://jehe.abzums.ac.ir/article-1-1099-fa.html


گروه شیمی تجزیه، دانشکده شیمی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران & آزمایشگاه تحقیقاتی نانومواد، جداسازی و آنالیز مقادیر بسیار کم، دانشکده شیمی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
چکیده:   (53 مشاهده)

زمینه و هدف: با توجه به توسعه سریع صنعتی و ورود جیوه به عنوان یک فلز با سمیت بالا، شناسایی و حذف این آلاینده، به ویژه در منابع آبی، اهمیت زیادی دارد. این مطالعه به تهیه یک نانوجاذب مغناطیسی مبتنی بر گرافن اکساید و گروه‌های عاملی گوگرد دار می‌پردازد تا گزینش‌پذیری جذب و کارایی حذف جیوه را افزایش دهد.
مواد و روش‌ها: جاذب S@MGO برای حذف جیوه در نمونه‌های آب و پساب تهیه شد. به منظور اندازه‌گیری جیوه از دستگاه طیف‌سنجی جذب اتمی بخار سرد استفاده شد. مشخصه‌یابی جاذب با استفاده از SEM، EDX، و FT-IR انجام شد. بهینه‌سازی پارامترهای موثر بر حذف جیوه با استفاده از طراحی آزمایش انجام شد. همدماهای جذب، ظرفیت جذب، پایداری و قابلیت استفاده مجدد، اثر یون‌های مزاحم و کارایی حذف جیوه در نمونه‌های آب و پساب مورد بررسی قرار گرفتند.
یافته‌ها: مقادیر بهینه پارامترهای جذب برای جاذب تهیه شده شامل pH محلول ۶/۸، زمان جذب ۲۹ دقیقه و مقدار جاذب mg ۵۳/۰ تعیین شد. نتایج همدماهای جذب نشان دادند که انطباق بهتری با مدل لانگمویر دارند (۰/۹۹۹۸ = ). این جاذب ظرفیت جذب بالایی معادل mg/g ۴۰۱/۰ دارد که نزدیک به بیشینه محاسبه‌شده با مدل لانگمویر (mg/g ۴۷۶/۱۹) است. همچنین، اصلاح سطح با گروه‌های گوگرد دار باعث افزایش گزینش‌پذیری برای یون جیوه در حضور سایر کاتیون‌ها شده است. جاذب از پایداری و قابلیت استفاده مجدد خوبی برخوردار است و کارایی حذف بالای ۹۰٪ را پس از ۱۰ مرحله جذب و واجذب حفظ می‌کند. در نهایت، کارایی حذف جیوه در نمونه‌های آب و پساب مختلف بیش از ۹۹٪ با RSD% کمتر از ۴/۱٪ حاصل شد.
نتیجه‌گیری: خاصیت مغناطیسی جاذب، امکان جمع‌آوری سریع آن را پس از انجام فرایند حذف میسر می‌سازد. به دلیل اصلاح سطح جاذب با گروه‌های عاملی گوگرد دار، انتخاب‌پذیری آن برای جیوه نسبت به یون‌های فلزی دیگر در محیط‌های آبی افزایش یافت. ظرفیت جذب بالا، راندمان حذف بالا و زمان حذف کوتاه از دیگر مزایای جاذب سنتز شده است.

متن کامل [PDF 947 kb]   (15 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1403/11/10 | پذیرش: 1403/12/27 | انتشار: 1404/1/27

فهرست منابع
1. Kakalejčíková S, Bazel Y, Fizer M. Extraction-less green spectrofluorimetric method for determination of mercury using an Astra Phloxine fluorophore: Comprehensive experimental and theoretical studies. Spectrochim Acta A Mol Biomol Spectrosc; 310. Epub ahead of print 2024. DOI: 10.1016/j.saa.2024.123946. [DOI:10.1016/j.saa.2024.123946]
2. Zare AH, Khajeh M, Oveisi AR, et al. A New Porphyrin-Porous Organic Polymer for Effective Adsorption of Mercury Ions. J Polym Environ. Epub ahead of print 2024. DOI: 10.1007/s10924-024-03312-7. [DOI:10.1007/s10924-024-03312-7]
3. Li GP, Zhang K, Zhang PF, et al. Thiol-Functionalized Pores via Post-Synthesis Modification in a Metal-Organic Framework with Selective Removal of Hg(II) in Water. Inorg Chem; 58. Epub ahead of print 2019. DOI: 10.1021/acs.inorgchem.8b03505. [DOI:10.1021/acs.inorgchem.8b03505]
4. Gao X, Liu B, Zhao X. Thiol-decorated defective metal-organic framework for effective removal of mercury(II) ion. Chemosphere; 317. Epub ahead of print 2023. DOI: 10.1016/j.chemosphere.2023.137891. [DOI:10.1016/j.chemosphere.2023.137891]
5. Yang Z. Voltammetry for quantitative determination of trace mercury ions in water via acetylene black modified carbon paste electrode. Alex Eng J; 87. Epub ahead of print 2024. DOI: 10.1016/j.aej.2023.12.007. [DOI:10.1016/j.aej.2023.12.007]
6. Anoop Krishnan K, Anirudhan TS. Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: Kinetics and equilibrium studies. J Hazard Mater; 92. Epub ahead of print 2002. DOI: 10.1016/S0304-3894(02)00014-6. [DOI:10.1016/S0304-3894(02)00014-6]
7. Zhao X, Gao X, Zhang YN, et al. Construction of dual sulfur sites in metal-organic framework for enhanced mercury(II) removal. J Colloid Interface Sci; 631. Epub ahead of print 2023. DOI: 10.1016/j.jcis.2022.10.153. [DOI:10.1016/j.jcis.2022.10.153]
8. Aguila B, Sun Q, Perman JA, et al. Efficient Mercury Capture Using Functionalized Porous Organic Polymer. Adv Mater; 29. Epub ahead of print 2017. DOI: 10.1002/adma.201700665. [DOI:10.1002/adma.201700665]
9. Döker S, Boşgelmez II. Rapid extraction and reverse phase-liquid chromatographic separation of mercury(II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem; 184. Epub ahead of print 2015. DOI: 10.1016/j.foodchem.2015.03.067. [DOI:10.1016/j.foodchem.2015.03.067]
10. Skubal LR, Meshkov NK. Reduction and removal of mercury from water using arginine-modified TiO2. J Photochem Photobiol A Chem; 148. Epub ahead of print 2002. DOI: 10.1016/S1010-6030(02)00045-X. [DOI:10.1016/S1010-6030(02)00045-X]
11. Bessbousse H, Rhlalou T, Verchère JF, et al. Sorption and filtration of Hg(II) ions from aqueous solutions with a membrane containing poly(ethyleneimine) as a complexing polymer. J Memb Sci; 325. Epub ahead of print 2008. DOI: 10.1016/j.memsci.2008.09.035. [DOI:10.1016/j.memsci.2008.09.035]
12. Fu K, Liu X, Lv C, et al. Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. Environ Sci Technol; 56. Epub ahead of print 2022. DOI: 10.1021/acs.est.1c07480. [DOI:10.1021/acs.est.1c07480]
13. Duan L, Hu X, Sun D, et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag. Korean J Chem Eng; 37. Epub ahead of print 2020. DOI: 10.1007/s11814-020-0546-x. [DOI:10.1007/s11814-020-0546-x]
14. Marinho OR, Kamogawa MY, Ferreira JR, et al. Automated liquid-liquid extraction procedure for the photometric determination of nanogram levels of Hg(II) in soil and sediment extracts. Microchemical Journal; 156. Epub ahead of print 2020. DOI: 10.1016/j.microc.2020.104978. [DOI:10.1016/j.microc.2020.104978]
15. Monier M, Abdel-Latif DA. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater; 209-210. Epub ahead of print 2012. DOI: 10.1016/j.jhazmat.2012.01.015. [DOI:10.1016/j.jhazmat.2012.01.015]
16. Angaru GKR, Lingamdinne LP, Choi YL, et al. Encapsulated zerovalent iron/nickel-fly ash zeolite foam for treating industrial wastewater contaminated by heavy metals. Mater Today Chem; 22. Epub ahead of print 2021. DOI: 10.1016/j.mtchem.2021.100577. [DOI:10.1016/j.mtchem.2021.100577]
17. Liang R, Zou H. Removal of aqueous Hg(ii) by thiol-functionalized nonporous silica microspheres prepared by one-step sol-gel method. RSC Adv; 10. Epub ahead of print 2020. DOI: 10.1039/d0ra02759f. [DOI:10.1039/D0RA02759F]
18. Reddy KSK, Shoaibi A Al, Srinivasakannan C. Mercury removal using metal sulfide porous carbon complex. Process Saf Environ Prot; 114. Epub ahead of print 2018. DOI: 10.1016/j.psep.2017.12.022. [DOI:10.1016/j.psep.2017.12.022]
19. Marcano DC, Kosynkin D V., Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano; 4806-4814. Epub ahead of print 2010. DOI: 10.1021/nn1006368. [DOI:10.1021/nn1006368]
20. Bourlinos AB, Gournis D, Petridis D, et al. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir; 19. Epub ahead of print 2003. DOI: 10.1021/la026525h. [DOI:10.1021/la026525h]
21. McAllister MJ, Li JL, Adamson DH, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater; 19. Epub ahead of print 2007. DOI: 10.1021/cm0630800. [DOI:10.1021/cm0630800]
22. Niyogi S, Bekyarova E, Itkis ME, et al. Solution properties of graphite and graphene. J Am Chem Soc; 128. Epub ahead of print 2006. DOI: 10.1021/ja060680r. [DOI:10.1021/ja060680r]
23. Bai H, Xu Y, Zhao L, et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun; 1667-1669. Epub ahead of print 2009. DOI: 10.1039/b821805f. [DOI:10.1039/b821805f]
24. Guo Y, Deng J, Zhu J, et al. Removal of mercury(II) and methylene blue from a wastewater environment with magnetic graphene oxide: Adsorption kinetics, isotherms and mechanism. RSC Adv; 6. Epub ahead of print 2016. DOI: 10.1039/c6ra14651a. [DOI:10.1039/C6RA14651A]
25. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. J Am Chem Soc; 80. Epub ahead of print 1958. DOI: 10.1021/ja01539a017. [DOI:10.1021/ja01539a017]
26. Kazemi E, Dadfarnia S, Haji Shabani AM. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions. Talanta; 141. Epub ahead of print 2015. DOI: 10.1016/j.talanta.2015.04.024. [DOI:10.1016/j.talanta.2015.04.024]
27. Choi M, Kim J, Oh Y, et al. Surface Modification of Sulfur-Assisted Reduced Graphene Oxide with Poly(phenylene sulfide) for Multifunctional Nanocomposites. Polymers (Basel); 14. Epub ahead of print 2022. DOI: 10.3390/polym14040732. [DOI:10.3390/polym14040732]
28. A.O D. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J Appl Chem; 3. Epub ahead of print 2012. DOI: 10.9790/5736-0313845. [DOI:10.9790/5736-0313845]
29. Mercier L, Pinnavaia TJ. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: Factors affecting Hg(II) uptake. Environ Sci Technol; 32. Epub ahead of print 1998. DOI: 10.1021/es970622t. [DOI:10.1021/es970622t]
30. Pérez-Quintanilla D, Sánchez A, del Hierro I, et al. Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole. J Colloid Interface Sci; 313. Epub ahead of print 2007. DOI: 10.1016/j.jcis.2007.04.063. [DOI:10.1016/j.jcis.2007.04.063]
31. Parham H, Zargar B, Shiralipour R. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J Hazard Mater; 205-206. Epub ahead of print 2012. DOI: 10.1016/j.jhazmat.2011.12.026. [DOI:10.1016/j.jhazmat.2011.12.026]
32. Soleimani M, Mahmodi MS, Morsali A, et al. Using a new ligand for solid phase extraction of mercury. J Hazard Mater; 189. Epub ahead of print 2011. DOI: 10.1016/j.jhazmat.2011.02.047. [DOI:10.1016/j.jhazmat.2011.02.047]
33. Kim BC, Lee J, Um W, et al. Magnetic mesoporous materials for removal of environmental wastes. J Hazard Mater; 192. Epub ahead of print 2011. DOI: 10.1016/j.jhazmat.2011.06.022. [DOI:10.1016/j.jhazmat.2011.06.022]
34. Bibby A, Mercier L. Mercury(II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chem Mater; 14. Epub ahead of print 2002. DOI: 10.1021/cm0112082. [DOI:10.1021/cm0112082]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله مهندسی بهداشت محیط می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 All Rights Reserved | Journal of Environmental Health Engineering

Designed & Developed by : Yektaweb