1. Ersan M, Dogan H. Investigation of environmentally friendly adsorbent synthesis from eggshell by carbonization, immobilization, and radiation: Box-Benkhen Design and tetracyclin removal. Groundwater for Sustainable Development. 2023; 20:100858. [
DOI:10.1016/j.gsd.2022.100858]
2. Ali MMM, Ahmed MJ. Adsorption behavior of doxycycline antibiotic on NaY zeolite from wheat (Triticum aestivum) straws ash. Journal of the Taiwan Institute of Chemical Engineers. 2017; 81:218-24. [
DOI:10.1016/j.jtice.2017.10.026]
3. Guo Y, Huang W, Chen B, Zhao Y, Liu D, Sun Y, et al. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism. Journal of hazardous materials. 2017; 339:22-32. [
DOI:10.1016/j.jhazmat.2017.06.006]
4. Wang T, Meng Z, Liu L, Li W. Insights into the interaction between cadmium/tetracycline and nano-TiO2 on a zeolite surface. Environmental Science and Pollution Research. 2023;30(7):18522-34. [
DOI:10.1007/s11356-022-23482-y]
5. Mousavi SA, Janjani H. Antibiotics adsorption from aqueous solutions using carbon nanotubes: a systematic review. Toxin Reviews. 2018. [
DOI:10.1080/15569543.2018.1483405]
6. Liu M, Hou L-a, Yu S, Xi B, Zhao Y, Xia X. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chemical engineering journal. 2013; 223:678-87. [
DOI:10.1016/j.cej.2013.02.088]
7. Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chemical engineering journal. 2011; 178:26-33. [
DOI:10.1016/j.cej.2011.09.127]
8. Al-Salihi S, Fidalgo MM, Xing Y. Fast Removal of Tetracycline from Aqueous Solution by Aluminosilicate Zeolite Nanoparticles with High Adsorption Capacity. ACS ES&T Water. 2023;3(3):838-47. [
DOI:10.1021/acsestwater.2c00600]
9. Balakrishnan A, Chinthala M, Polagani RK, Vo D-VN. Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: A review. Environmental Research. 2023;216:114660. [
DOI:10.1016/j.envres.2022.114660]
10. Noroozi R, Gholami M, Kalantary RR, Farzadkia MJIJoEAC. Photo-catalytic degradation of sulfamethoxazole from aqueous solutions using Cu-TiO2/CQDs hybrid composite, optimisation, performance and reaction mechanism studies. 2023;103(20):9501-18. [
DOI:10.1080/03067319.2021.2013478]
11. Jafari AJ, Kalantary RR, Esrafili A, Moslemzadeh MJJoEHS, Engineering. Photo-catalytic degradation of bisphenol-a form aqueous solutions using GF/Fe-TiO2-CQD hybrid composite. 2021; 19:837-49. [
DOI:10.1007/s40201-021-00651-8]
12. Lin S, Zhang X, Sun Q, Zhou T, Lu JJMRB. Fabrication of solar light induced Fe-TiO2 immobilized on glass-fiber and application for phenol photocatalytic degradation. 2013;48(11):4570-5. [
DOI:10.1016/j.materresbull.2013.07.063]
13. Chen P, Wang F, Chen Z-F, Zhang Q, Su Y, Shen L, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: the significant roles of reactive oxygen species. 2017; 204:250-9. [
DOI:10.1016/j.apcatb.2016.11.040]
14. Su Y, Chen P, Wang F, Zhang Q, Chen T, Wang Y, et al. Decoration of TiO2/gC3N4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin. 2017;7(54):34096-103. [
DOI:10.1039/C7RA05485H]
15. Shen S, Chen K, Wang H, Fu JJD, Materials R. Construction of carbon dots-deposited TiO2 Photocatalysts with visible-light-induced photocatalytic activity for the elimination of pollutants. 2022; 124:108896. [
DOI:10.1016/j.diamond.2022.108896]
16. Liu Y, Zhu C, Sun J, Ge Y, Song F, Xu QJNJoC. In situ assembly of CQDs/Bi2WO6 for highly efficient photocatalytic degradation of VOCs under visible light. 2020;44(8):3455-62. [
DOI:10.1039/C9NJ04957F]
17. Hong Y, Meng Y, Zhang G, Yin B, Zhao Y, Shi W, et al. Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity. 2016; 171:229-37. [
DOI:10.1016/j.seppur.2016.07.025]
18. Aahyuni E, Yulikayani P, Aprilita N. Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 for photodegradation of amoxicillin in water. J Mater Environ Sci. 2020;11(4):670-83.
19. Safari GH1 HM, Kamali H3, Moradirad R4, Mahvi AH. Photocatalytic Degradation of Tetracycline Antibiotic from Aqueous Solutions Using UV/TiO2 and UV/H2O2/TiO2. Health and environment journal. 2014;5(3):203-13.
20. Jafari AJ, Kalantary RR, Esrafili A, Moslemzadeh M. Photo-catalytic degradation of bisphenol-A from aqueous solutions using GF/Fe-TiO2-CQD hybrid composite. Journal of Environmental Health Science and Engineering. 2021;19(1):837-49. [
DOI:10.1007/s40201-021-00651-8]