[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Accepted articles :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing::
Open Access Policy::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 4 (9-2023) ::
jehe 2023, 10(4): 352-371 Back to browse issues page
Studying the performance of montmorillonite-CuFe2O4 nanocomposite for peroxymonosulfate activation in acid red 18 dye degradation
Nezamaddin Mengelizadeh * , Mohammad Hossein Dehghani
Department of Environmental Health Engineering, Larestan University of Medical Sciences, Larestan, Iran
Abstract:   (449 Views)
Background: The effluent from textile industries contains various metal pollutants and organic substances, which have attracted the attention of environmental engineers in recent decades. Methods based on advanced oxidation processes such as peroxymonosulfate (PMS) activation are excellent techniques for destroying organic pollutants such as dye with a complex structure. In the present study, copper ferrite nanoparticles (CuFe2O4) loaded on montmorillonite (MMT) were used as PMS activating catalyst in the decomposition of acid red 18 dye.
Methods: The MMT-CuFe2O4 catalyst was prepared by sol-gel method, and its properties were determined through TEM, SEM-EDX, XRD, and FTIR analysis. Optimum conditions for maximum dye removal were predicted through response surface methodology (RSM). The effect of anions on the rate of dye decomposition and catalyst stability was carried out as additional tests in the present study.
Results: Diagnostic analyses showed that CuFe2O4 nanoparticles with nanometer size were loaded on the surface of MMT. The results of statistical analysis with R2 = 0.977 and F = 114.27 showed that the parameters were effective on the catalytic decomposition of dye. Maximum dye removal efficiency (99.66%) was predicted by the RSM model in optimal conditions including pH of 8.93, PMS dosage of 1.18 mM, catalyst dosage of 228 mg/L, and reaction time of 9.66 min. The presence of various anions in the reaction medium reduced the efficiency from 100% to 85%.
Conclusion: Based on the results, MMT-CuFe2O4 is a good candidate for treatment of the aqueous solution containing acid red 18 dye.
Keywords: Catalytic decomposition, response surface methodology, MMT-CuFe2O4, peroxymonosulfate
Full-Text [PDF 1870 kb]   (184 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/09/21 | Accepted: 2023/10/28 | Published: 2023/12/13
References
1. Yari AR, Nazari S, Rastegar A, et al. Removal of acid red 18 dye from aqueous solutions using nanoscale Zero-Valent Iron. Iranian Journal of Health Sciences 2015;3(3): 63-9.
2. Daneshvar N, Salari D, Khataee A. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry 2003;157(1): 111-6. [DOI:10.1016/S1010-6030(03)00015-7]
3. Siboni MS, Samarghandi M, Yang J-K, Lee S-M. Photocatalytic removal of reactive black-5 dye from aqueous solution by UV irradiation in aqueous TiO2: equilibrium and kinetics study. Journal of Advanced Oxidation Technologies 2011;14(2): 302-7. [DOI:10.1515/jaots-2011-0216]
4. Shokohi et al. Removal of Reactive Black 5 (RB5) dye from aquatic solution by using of adsorption onto synthesized sodium alginate magnetic beads.
5. Shirmardi M, Mesdaghinia A, Mahvi AH, et al. Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. Journal of Chemistry 2012;9(4): 2371-83. [DOI:10.1155/2012/541909]
6. Attar HM, Rezaee R. Investigating the efficiency of advanced photochemical oxidation (APO) technology in degradation of direct azo dye by UV/H2O2 process. Journal of Water & Wastewater 2006;59: 75-86.
7. Lopes A, Martins S, Morao A, et al. Degradation of a textile dye CI Direct Red 80 by electrochemical processes. Portugaliae Electrochimica Acta 2004;22(3): 279-94. [DOI:10.4152/pea.200403279]
8. Masombaigi H, Rezaee A, Nasiri A. Photocatalytic degradation of Methylene Blue using ZnO nano-particles. Iranian Journal of Health and Environment 2009;2(3): 188-95.
9. Ollis DF, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environmental Science & Technology 1991;25(9): 1522-9. [DOI:10.1021/es00021a001]
10. Jiraratananon R, Sungpet A, Luangsowan P. Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt. Desalination 2000;130(2): 177-83. [DOI:10.1016/S0011-9164(00)00085-0]
11. Purkait M, DasGupta S, De S. Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation and purification Technology 2004;37(1): 81-92. [DOI:10.1016/j.seppur.2003.08.005]
12. Ofomaja AE. Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal 2008;143(1-3): 85-95. [DOI:10.1016/j.cej.2007.12.019]
13. Hameed B, Ahmad A, Latiff K. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and pigments 2007;75(1): 143-9. [DOI:10.1016/j.dyepig.2006.05.039]
14. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of hazardous materials 2006;135(1-3): 264-73. [DOI:10.1016/j.jhazmat.2005.11.062] [PMID]
15. Zeng H, Zhang W, Deng L, et al. Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling. Journal of colloid and interface science 2018;515: 92-100. [DOI:10.1016/j.jcis.2018.01.016] [PMID]
16. Yang S, Yang X, Shao X, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. Journal of hazardous materials 2011;186(1): 659-66. [DOI:10.1016/j.jhazmat.2010.11.057] [PMID]
17. Guo W, Su S, Yi C, Ma Z. Degradation of antibiotics amoxicillin by Co3O4‐catalyzed peroxymonosulfate system. Environmental progress & sustainable energy 2013;32(2): 193-7. [DOI:10.1002/ep.10633]
18. Chen X, Wang W, Xiao H, et al. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chemical engineering journal 2012;193: 290-5. [DOI:10.1016/j.cej.2012.04.033]
19. Bagal MV, Gogate PR. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrasonics Sonochemistry 2014;21(1): 1-14. [DOI:10.1016/j.ultsonch.2013.07.009] [PMID]
20. Rache ML, García AR, Zea HR, et al. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental 2014;146: 192-200. [DOI:10.1016/j.apcatb.2013.04.028]
21. Shi P, Su R, Zhu S, et al. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water. Journal of hazardous materials 2012;229: 331-9. [DOI:10.1016/j.jhazmat.2012.06.007] [PMID]
22. Ghanbari F, Jaafarzadeh N. Graphite-supported CuO catalyst for heterogeneous peroxymonosulfate activation to oxidize Direct Orange 26: the effect of influential parameters. Research on Chemical Intermediates 2017;43(8): 4623-37. [DOI:10.1007/s11164-017-2901-z]
23. Yao Y, Yang Z, Sun H, Wang S. Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Industrial & engineering chemistry research 2012;51(46): 14958-65. [DOI:10.1021/ie301642g]
24. Liu J, Zhao Z, Shao P, Cui F. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation. Chemical Engineering Journal 2015;262: 854-61. [DOI:10.1016/j.cej.2014.10.043]
25. La DD, Nguyen TA, Jones LA, Bhosale SV. Graphene-Supported Spinel CuFe2O4 Composites: Novel adsorbents for arsenic removal in aqueous media. Sensors 2017;17(6): 1292. [DOI:10.3390/s17061292] [PMID] []
26. Othman I, Haija MA, Ismail I, et al. Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Materials Chemistry and Physics 2019;238: 121931. [DOI:10.1016/j.matchemphys.2019.121931]
27. Vergis BR, Krishna RH, Kottam N, et al. Removal of malachite green from aqueous solution by magnetic CuFe 2 O 4 nano-adsorbent synthesized by one pot solution combustion method. Journal of Nanostructure in Chemistry 2018;8(1): 1-12. [DOI:10.1007/s40097-017-0249-y]
28. Nakhate AV, Yadav GD. Solvothermal Synthesis of CuFe2O4@ rGO: Efficient Catalyst for C‐O Cross Coupling and N‐arylation Reaction under Ligand‐Free Condition. ChemistrySelect 2017;2(24): 7150-9. [DOI:10.1002/slct.201700556]
29. Dong X, Ren B, Sun Z, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Applied Catalysis B: Environmental 2019;253: 206-17. [DOI:10.1016/j.apcatb.2019.04.052]
30. Li W, Qi H, Guo F, et al. NiFe 2 O 4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances 2019;9(51): 29959-66. [DOI:10.1039/C9RA05844C] [PMID] []
31. Wu J, Cagnetta G, Wang B, et al. Efficient degradation of carbamazepine by organo-montmorillonite supported nCoFe2O4-activated peroxymonosulfate process. Chemical Engineering Journal 2019;368: 824-36. [DOI:10.1016/j.cej.2019.02.137]
32. Chen L, Ding D, Liu C, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration. Chemical Engineering Journal 2018;334: 273-84. [DOI:10.1016/j.cej.2017.10.040]
33. Chen C-B, Zhang F, Li C-X, et al. A magnetic CoFe 2 O 4-CNS nanocomposite as an efficient, recyclable catalyst for peroxymonosulfate activation and pollutant degradation. RSC advances 2017;7(87): 55020-5. [DOI:10.1039/C7RA09665H]
34. Shahamat YD, Zazouli MA, Zare MR, Mengelizadeh N. Catalytic degradation of diclofenac from aqueous solutions using peroxymonosulfate activated by magnetic MWCNTs-CoFe 3 O 4 nanoparticles. Rsc Advances 2019;9(29): 16496-508. [DOI:10.1039/C9RA02757B] [PMID] []
35. Yang S, Huang Z, Wu P, et al. Rapid removal of tetrabromobisphenol A by α-Fe2O3-x@ Graphene@ Montmorillonite catalyst with oxygen vacancies through peroxymonosulfate activation: Role of halogen and α-hydroxyalkyl radicals. Applied Catalysis B: Environmental 2020;260: 118129. [DOI:10.1016/j.apcatb.2019.118129]
36. Ai L, Zhou Y, Jiang J. Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 2011;266(1-3): 72-7. [DOI:10.1016/j.desal.2010.08.004]
37. Marković M, Marinović S, Mudrinić T, et al. Cobalt impregnated pillared montmorillonite in the peroxymonosulfate induced catalytic oxidation of tartrazine. Reaction Kinetics, Mechanisms and Catalysis 2018;125(2): 827-41. [DOI:10.1007/s11144-018-1466-1]
38. Fadaei S, Noorisepehr M, Pourzamani H, et al. Heterogeneous activation of peroxymonosulfate with Fe3O4 magnetic nanoparticles for degradation of Reactive Black 5: batch and column study. Journal of Environmental Chemical Engineering 2021;9(4): 105414. [DOI:10.1016/j.jece.2021.105414]
39. Furman OS, Teel AL, Watts RJ. Mechanism of base activation of persulfate. Environmental science & technology 2010;44(16): 6423-8. [DOI:10.1021/es1013714] [PMID]
40. Chen G, Nengzi L-C, Gao Y, et al. Degradation of tartrazine by peroxymonosulfate through magnetic Fe2O3/Mn2O3 composites activation. Chinese Chemical Letters 2020;31(10): 2730-6. [DOI:10.1016/j.cclet.2020.02.033]
41. Lei X, You M, Pan F, et al. CuFe2O4@ GO nanocomposite as an effective and recoverable catalyst of peroxymonosulfate activation for degradation of aqueous dye pollutants. Chinese Chemical Letters 2019;30(12): 2216-20. [DOI:10.1016/j.cclet.2019.05.039]
42. Du Y, Ma W, Liu P, et al. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. Journal of hazardous materials 2016;308: 58-66. [DOI:10.1016/j.jhazmat.2016.01.035] [PMID]
43. Pang X, Guo Y, Zhang Y, et al. LaCoO 3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism. Chemical Engineering Journal 2016;304: 897-907. [DOI:10.1016/j.cej.2016.07.027]
44. Yao Y, Yang Z, Zhang D, et al. Magnetic CoFe2O4-graphene hybrids: facile synthesis, characterization, and catalytic properties. Industrial & Engineering Chemistry Research 2012;51(17): 6044-51. [DOI:10.1021/ie300271p]
45. Gong C, Chen F, Yang Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chemical Engineering Journal 2017;321: 222-32. [DOI:10.1016/j.cej.2017.03.117]
46. Xu L, Chu W, Gan L. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chemical engineering journal 2015;263: 435-43. [DOI:10.1016/j.cej.2014.11.065]
47. Su S, Guo W, Leng Y, et al. Heterogeneous activation of Oxone by CoxFe3− xO4 nanocatalysts for degradation of rhodamine B. Journal of hazardous materials 2013;244: 736-42. [DOI:10.1016/j.jhazmat.2012.11.005] [PMID]
48. Xu L, Chu W, Gan L. Environmental application of graphene-based CoFe 2 O 4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chemical Engineering Journal 2015;263: 435-43. [DOI:10.1016/j.cej.2014.11.065]
49. Deng J, Chen Y-J, Lu Y-A, et al. Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B. Environmental Science and Pollution Research 2017: 1-13. [DOI:10.1007/s11356-017-8941-5] [PMID]
50. Tan C, Gao N, Deng Y, et al. Radical induced degradation of acetaminophen with Fe 3 O 4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. Journal of hazardous materials 2014;276: 452-60. [DOI:10.1016/j.jhazmat.2014.05.068] [PMID]
51. Wan Z, Hu J, Wang J. Removal of sulfamethazine antibiotics using Ce Fe-graphene nanocomposite as catalyst by Fenton-like process. Journal of environmental management 2016;182: 284-91. [DOI:10.1016/j.jenvman.2016.07.088] [PMID]
52. Hu C, Yuchao T, Lanyu L, et al. Effects of inorganic anions on photoactivity of various photocatalysts under different conditions. Journal of Chemical Technology & Biotechnology 2004;79(3): 247-52. [DOI:10.1002/jctb.934]
53. Gao X, Guo Q, Tang G, et al. Effects of inorganic ions on the photocatalytic degradation of carbamazepine. Journal of Water Reuse and Desalination 2019;9(3): 301-9. [DOI:10.2166/wrd.2019.001]
54. Feng Q, Zhou J, Zhang Y. Coupling Bi 2 MoO 6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light. Journal of Materials Science: Materials in Electronics 2019;30(21): 19108-18. [DOI:10.1007/s10854-019-02266-0]
55. Li R, Hu H, Ma Y, et al. Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light. Journal of Cleaner Production 2020;276: 124246. [DOI:10.1016/j.jclepro.2020.124246]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mengelizadeh N, Dehghani M H. Studying the performance of montmorillonite-CuFe2O4 nanocomposite for peroxymonosulfate activation in acid red 18 dye degradation. jehe 2023; 10 (4) :352-371
URL: http://jehe.abzums.ac.ir/article-1-1006-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 4 (9-2023) Back to browse issues page
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4645