1. Goel S. Antibiotics in the environment: A review. Emerging micro-pollutants in the environment: Occurrence, fate, and distribution: ACS Publications; 2015. 19-42. [ DOI:10.1021/bk-2015-1198.ch002] 2. Pareek S, Mathur N, Singh A, Nepalia A. Antibiotics in the Environment: A Review. International Journal of Current Microbiology and Applied Sciences. 2015;11:278-85. 3. Naghipour D, Taghavi K, Jaafari J, Hashim KS, Javan Mahjoub Doust F, Mahjoub Doust MJ. Evaluation of the efficacy of Fe2O3 magnetised kaolin: simultaneous removal of ceftriaxone and cefixime from aqueous media. International Journal of Environmental Analytical Chemistry. 2022:1-18. [ DOI:10.1080/03067319.2022.2115899] 4. Baaloudj O, Nasrallah N, Bouallouche R, Kenfoud H, Khezami L, Assadi AA. High efficient Cefixime removal from water by the sillenite Bi12TiO20: Photocatalytic mechanism and degradation pathway. Journal of Cleaner Production. 2022;330:129934. [ DOI:10.1016/j.jclepro.2021.129934] 5. Truong TTT, Vu TN, Dinh TD, Pham TT, Nguyen TAH, Nguyen MH, et al. Adsorptive removal of cefixime using a novel adsorbent based on synthesized polycation coated nanosilica rice husk. Progress in Organic Coatings. 2021;158:106361. [ DOI:10.1016/j.porgcoat.2021.106361] 6. Zavareh S, Eghbalazar T. Efficient and selective removal of cefixime form aqueous solution by a modified bionanocomposite. Journal of Environmental Chemical Engineering. 2017;50(4):3337-47. [ DOI:10.1016/j.jece.2017.06.042] 7. Liu J, Bahadoran A, Emami N, Al-Musawi TJ, Dawood FA, Nasajpour-Esfahani N, et al. Removal of diclofenac sodium and cefixime from wastewater by polymeric PES mixed-matrix-membranes embedded with MIL101-OH/Chitosan. Process Safety and Environmental Protection. 2023;172:588-93. [ DOI:10.1016/j.psep.2023.02.060] 8. MirzaHedayat B, Noorisepehr M, Dehghanifard E, Esrafili A, Norozi R. Evaluation of photocatalytic degradation of 2, 4-Dinitrophenol from synthetic wastewater using Fe3O4@ SiO2@ TiO2/rGO magnetic nanoparticles. Journal of Molecular Liquids. 2018;264:571-8. [ DOI:10.1016/j.molliq.2018.05.102] 9. Kakavandi B, Bahari N, Kalantary RR, Fard ED. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@ T) coupled with US and UV: A new hybrid system. Ultrasonics Sonochemistry. 2019;55:75-85. [ DOI:10.1016/j.ultsonch.2019.02.026] [ PMID] 10. Aziz AA, Yau YH, Puma GL, Fischer C, Ibrahim S, Pichiah S. Highly efficient magnetically separable TiO2-graphene oxide supported SrFe12O19 for direct sunlight-driven photoactivity. Chemical Engineering Journal. 2014;235:264-74. [ DOI:10.1016/j.cej.2013.09.043] 11. Scarpelli F, Mastropietro T, Poerio T, Godbert N. Mesoporous TiO2 Thin Films: State of the Art. Titanium Dioxide-Material for a Sustainable Environment. 2018:57-80. [ DOI:10.5772/intechopen.74244] 12. Rashid J, Barakat M, Ruzmanova Y, Chianese A. Fe 3 O 4/SiO 2/TiO 2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environmental Science and Pollution Research. 2015;22(4):3149-57. [ DOI:10.1007/s11356-014-3598-9] [ PMID] 13. Xekoukoulotakis NP, Xinidis N, Chroni M, Mantzavinos D, Venieri D, Hapeshi E, et al. UV-A/TiO2 photocatalytic decomposition of erythromycin in water: Factors affecting mineralization and antibiotic activity. Catalysis Today. 2010;151(1-2):29-33. [ DOI:10.1016/j.cattod.2010.01.040] 14. Tran ML, Fu C-C, Juang R-S. Removal of metronidazole by TiO 2 and ZnO photocatalysis: a comprehensive comparison of process optimization and transformation products. Environmental Science and Pollution Research. 2018;25(28):28285-95. [ DOI:10.1007/s11356-018-2848-7] [ PMID] 15. Zhou R, Li T, Su Y, Ma T, Zhang L, Ren H. Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms. Environmental Science and Pollution Research. 2018;25(3):2466-75. [ DOI:10.1007/s11356-017-0518-9] [ PMID] 16. Shukla PR, Wang S, Ang HM, Tadé MO. Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Separation and Purification Technology. 2010;70(3):338-44. [ DOI:10.1016/j.seppur.2009.10.018] 17. Avetta P, Pensato A, Minella M, Malandrino M, Maurino V, Minero C, et al. Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions. Environmental Science & Technology. 2015;49(2):1043-50. [ DOI:10.1021/es503741d] [ PMID] 18. Lakshmipathi Naik GD, Kottam N, Shivashankar GK. Photo catalytic degradation of azo dyes over Mn2+ doped TiO2 catalyst under UV/solar light: an insight to the route of electron transfer in the mixed phase of anatase and rutile. Chinese Journal of Chemistry. 2010;28(11):2151-61. [ DOI:10.1002/cjoc.201090356] 19. Yan J, Lei M, Zhu L, Anjum MN, Zou J, Tang H. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. Journal of Hazardous Materials. 2011;186(2-3):1398-404. [ DOI:10.1016/j.jhazmat.2010.12.017] [ PMID] 20. Zarei AA, Tavassoli P, Bazrafshan E. Evaluation of UV/S2O8 process efficiency for removal of metronidazole (MNZ) from aqueous solutions. Water Science and Technology. 2018;2017(1):126-33. [ DOI:10.2166/wst.2018.096] [ PMID] 21. Monteagudo J, Durán A, San Martin I, Carrillo P. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis. Chemical Engineering Journal. 2019;364:257-68. [ DOI:10.1016/j.cej.2019.01.165] 22. Demirezen DA, Yıldız YŞ, Yılmaz DD. Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis. Environmental Nanotechnology, Monitoring & Management. 2019;11:100219. [ DOI:10.1016/j.enmm.2019.100219] 23. Guo X, Yang H, Liu J, Guo G. Synthesis of Bi 2 WO 6 composites by carbon adsorption for visible light photocatalytic degradation of metronidazole. Reaction Kinetics, Mechanisms and Catalysis. 2017;120(2):809-20. [ DOI:10.1007/s11144-016-1119-1] 24. Sui M, Xing S, Sheng L, Huang S, Guo H. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. Journal of Hazardous Materials. 2012;227:227-36. [ DOI:10.1016/j.jhazmat.2012.05.039] [ PMID] 25. Jorfi S, Kakavandi B, Motlagh HR, Ahmadi M, Jaafarzadeh N. A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@ C as an efficient activator of peroxymonosulfate. Applied Catalysis B: Environmental. 2017;219:216-30. [ DOI:10.1016/j.apcatb.2017.07.035] 26. Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science Enginerring International Journal. 2017;1(3):1-10. [ DOI:10.15406/mseij.2017.01.00018] 27. Bekkouche S, Merouani S, Hamdaoui O, Bouhelassa M. Efficient photocatalytic degradation of Safranin O by integrating solar-UV/TiO2/persulfate treatment: Implication of sulfate radical in the oxidation process and effect of various water matrix components. Journal of Photochemistry and Photobiology A: Chemistry. 2017;345:80-91. [ DOI:10.1016/j.jphotochem.2017.05.028] 28. Golshan M, Kakavandi B, Ahmadi M, Azizi M. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@ CuFe2O4) into 2, 4-D degradation: Process feasibility, mechanism and pathway. Journal of Hazardous Materials. 2018;359:325-37. [ DOI:10.1016/j.jhazmat.2018.06.069] [ PMID] 29. Ahmadi M, Kakavandi B, Jorfi S, Azizi M. Oxidative degradation of aniline and benzotriazole over PAC@ FeIIFe2IIIO4: a recyclable catalyst in a heterogeneous photo-Fenton-like system. Journal of Photochemistry and Photobiology A: Chemistry. 2017;336:42-53. [ DOI:10.1016/j.jphotochem.2016.12.014] 30. Li H, Gao Q, Wang G, Han B, Xia K, Zhou C. Architecturing CoTiO3 overlayer on nanosheets-assembled hierarchical TiO2 nanospheres as a highly active and robust catalyst for peroxymonosulfate activation and metronidazole degradation. Chemical Engineering Journal. 2019:123819. [ DOI:10.1016/j.cej.2019.123819] 31. Hu L, Zhang G, Liu M, Wang Q, Wang P. Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology. Chemosphere. 2018;212:152-61. [ DOI:10.1016/j.chemosphere.2018.08.065] [ PMID] 32. Liu H, Jia Z, Ji S, Zheng Y, Li M, Yang H. Synthesis of TiO2/SiO2@ Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catalysis Today. 2021;175(1):293-8. [ DOI:10.1016/j.cattod.2011.04.042] 33. Kakavandi B, Dehghanifard E, Gholami P, Noorisepehr M, MirzaHedayat B. Photocatalytic activation of peroxydisulfate by magnetic Fe3O4@ SiO2@ TiO2/rGO core-shell towards degradation and mineralization of metronidazole. Applied Surface Science. 2021;570:151145. [ DOI:10.1016/j.apsusc.2021.151145] 34. Nie M, Yang Y, Zhang Z, Yan C, Wang X, Li H, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal. 2023;246:383-82. [ DOI:10.1016/j.cej.2014.02.047]
|