[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: مقالات پذیرفته شده :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
نمایه ها::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
ثبت شده در کراس رف

AWT IMAGE

..
:: دوره 9، شماره 3 - ( 3-1401 ) ::
جلد 9 شماره 3 صفحات 312-295 برگشت به فهرست نسخه ها
بررسی اثربخشی گندزداهای مختلف درحذف ویروس کرونا: مطالعه مروری
مریم نوری گوشکی ، مجید نوذری*
گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی کرمان، کرمان، ایران
چکیده:   (961 مشاهده)
زمینه و هدف: عفونت های ویروسی باعث ایجاد بیماری های مختلف و مرگ و میر در سرتاسر جهان شدند. در سالیان اخیر، ظهور ویروس کرونا باعث عفونت‌های شدید دستگاه تنفسی و منجر به یک نگرانی جهانی شده است. هدف از مطالعه حاضر، بررسی اثربخشی گندزداهای مختلفی است که جهت کنترل ویروس کرونا مورد استفاده قرار گرفته اند.
مواد و روش ها: مطالعه حاضر یک مطالعه مروری نظامند است. جمع آوری داده‌ها از طریق جستجوی مقالات در پایگاه های اطلاعاتی شاملSpringer ،Google Scholar ، Prospero، Cochrane، ISI،Scopus ،Embase ،PubMed  وDOAJ  بود. پس از جستجو و جمع آوری مقالات مرتبط با هدف، مقالات دسته بندی گردید. داده های مورد نیاز استخراج شد و در نهایت مورد تجزیه و تحلیـل قرار گرفت.
یافته ها: بررسی مطالعات مختلف نشان داد که ویروس کرونا میتواند تا ۹ روز بـر روی سـطوح بی‌جان، عفونت زا باقی بماند. همچنین چند مطالعه وجود ویروس کرونا را در مدفوع گزارش نموده بودند. یافته های مستخرج از مقالات آشکار نمود که عفونت زایی ویروس کرونا روی سطوح توسط اتانول۷۱-۶۲ درصد، پراکسید هیدروژن 5/0 درصد و هیپوکلریت سدیم 1/0 درصد در عرض ۱ دقیقه کاهش می‌یابد. همچنین، ویروس کرونا در فاضلاب سپتیک تانک توسط۸۰۰ تا ۶۷۰۰ گرم بر مترمکعب هیپوکلریت سدیم در زمان تماس ۵/۱ ساعت غیرفعال می‌شود. علاوه بر این، ویروس کرونا در آئروسل های هوا تحت اشعه UVC در عرض ۴ تا ۹ ثانیه به میزان  log۵ کاهش می‌یابد.
 نتیجه گیری: داروها و واکسن های مؤثری برای بیماری کووید-19 تا به امروز ساخته شدند. با این وجود، به دلیل جهش‌های غیرمنتظره ویروس کرونا، شناسایی گندزداهای مؤثر برحذف سویه های مختلف ویروس کرونا از سطوح و محیط های مختلف می‌تواند اقـدام مناسبی بـرای پیشـگیری و جلـوگیری از انتشـار بیماری کووید-19 باشد.
 
واژه‌های کلیدی: گندزداها، گندزدایی، ویروس کرونا، کووید-19، فاضلاب، نانوذرات فلزی
متن کامل [PDF 452 kb]   (569 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/5/4 | پذیرش: 1401/6/26 | انتشار: 1401/6/30
فهرست منابع
1. 1. Mawar N, Sahay S, Pandit A, Mahajan U. The third phase of HIV pandemic: social consequences of HIV/AIDS stigma & discrimination & future needs. Indian Journal of Medical Research 2005;122(6): 471.
2. Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China. International journal of infectious diseases 2020;91: 264-6. [DOI:10.1016/j.ijid.2020.01.009] [PMID] []
3. Feng Z, Cao S-J, Haghighat F. Removal of SARS-CoV-2 using UV+ Filter in built environment. Sustainable Cities and Society 2021;74: 103226. [DOI:10.1016/j.scs.2021.103226] [PMID] []
4. Achak M, Bakri SA, Chhiti Y, et al. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Science of the Total Environment 2021;761: 143192. [DOI:10.1016/j.scitotenv.2020.143192] [PMID] []
5. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The lancet 2020;395(10242): 1973-87. [DOI:10.1016/S0140-6736(20)31142-9] [PMID]
6. Rowan NJ, Moral RA. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. Science of the Total Environment 2021;772: 145530. [DOI:10.1016/j.scitotenv.2021.145530] [PMID] []
7. Russell A. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. Journal of Applied Microbiology 2002;92: 121S-35S. [DOI:10.1046/j.1365-2672.92.5s1.12.x]
8. Rowan NJ, Casey O. Empower Eco multiactor HUB: A triple helix 'academia-industry-authority'approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations Sustainable Development Goals framework. Current Opinion in Environmental Science & Health 2021;21: 100254. [DOI:10.1016/j.coesh.2021.100254]
9. Rowan NJ, Galanakis CM. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? Science of the Total Environment 2020;748: 141362. [DOI:10.1016/j.scitotenv.2020.141362] [PMID] []
10. Rai NK, Ashok A, Akondi BR. Consequences of chemical impact of disinfectants: safe preventive measures against COVID-19. Critical reviews in toxicology 2020;50(6): 513-20. [DOI:10.1080/10408444.2020.1790499] [PMID]
11. Bedrosian N, Mitchell E, Rohm E, et al. A systematic review of surface contamination, stability, and disinfection data on SARS-CoV-2 (through July 10, 2020). Environmental Science & Technology 2020;55(7): 4162-73. [DOI:10.1021/acs.est.0c05651] [PMID]
12. Al-Sayah MH. Chemical disinfectants of COVID-19: an overview. Journal of water and health 2020;18(5): 843-8. [DOI:10.2166/wh.2020.108] [PMID]
13. Zhang D, Ling H, Huang X, et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Science of the Total Environment 2020;741: 140445. [DOI:10.1016/j.scitotenv.2020.140445] [PMID] []
14. Mahmood A, Eqan M, Pervez S, et al. COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Science of the Total Environment 2020;742: 140561. [DOI:10.1016/j.scitotenv.2020.140561] [PMID] []
15. Rowan NJ, Meade E, Garvey M. Efficacy of frontline chemical biocides and disinfection approaches for inactivating SARS-CoV-2 variants of concern that cause coronavirus disease with the emergence of opportunities for green eco-solutions. Current Opinion in Environmental Science & Health 2021;23: 100290. [DOI:10.1016/j.coesh.2021.100290] [PMID] []
16. Lin Q, Lim JY, Xue K, et al. Sanitizing agents for virus inactivation and disinfection. View 2020;1(2): e16. [DOI:10.1002/viw2.16] [PMID] []
17. Meyers C, Kass R, Goldenberg D, et al. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces. Journal of Hospital Infection 2021;107: 45-9. [DOI:10.1016/j.jhin.2020.09.026] [PMID] []
18. Mileto D, Mancon A, Staurenghi F, et al. Inactivation of SARS-CoV-2 in the liquid phase: are aqueous hydrogen peroxide and sodium percarbonate efficient decontamination agents? ACS Chemical Health & Safety 2021;28(4): 260-7. [DOI:10.1021/acs.chas.0c00095] [PMID]
19. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of hospital infection 2020;104(3): 246-51. [DOI:10.1016/j.jhin.2020.01.022] [PMID] []
20. Pedreira A, Taşkın Y, García MR. A critical review of disinfection processes to control SARS-CoV-2 transmission in the food industry. Foods 2021;10(2): 283. [DOI:10.3390/foods10020283] [PMID] []
21. Lauritano D, Moreo G, Limongelli L, et al. Environmental disinfection strategies to prevent indirect transmission of SARS-CoV2 in healthcare settings. Applied Sciences 2020;10(18): 6291. [DOI:10.3390/app10186291]
22. Bidra AS, Pelletier JS, Westover JB, et al. Comparison of in vitro inactivation of SARS CoV‐2 with hydrogen peroxide and povidone‐iodine oral antiseptic rinses. Journal of Prosthodontics 2020;29(7): 599-603. [DOI:10.1111/jopr.13220] [PMID] []
23. Auerswald H, Yann S, Dul S, et al. Assessment of inactivation procedures for SARS-CoV-2. The Journal of General Virology 2021;102(3). [DOI:10.1099/jgv.0.001539] [PMID] []
24. Storm N, McKay LG, Downs SN, et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Scientific Reports 2020;10(1): 1-5. [DOI:10.1038/s41598-020-79600-8] [PMID] []
25. Zucker I, Lester Y, Alter J, et al. Pseudoviruses for the assessment of coronavirus disinfection by ozone. Environmental chemistry letters 2021;19(2): 1779-85. [DOI:10.1007/s10311-020-01160-0] [PMID] []
26. Aghamirza Moghim Aliabadi H, Eivazzadeh‐Keihan R, Beig Parikhani A, et al. COVID‐19: A systematic review and update on prevention, diagnosis, and treatment. MedComm 2022;3(1): e115. [DOI:10.1002/mco2.115] [PMID] []
27. Fernando S, Gunasekara T, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. 2018. [DOI:10.4038/sljid.v8i1.8167]
28. Kaweeteerawat C, Na Ubol P, Sangmuang S, et al. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. Journal of Toxicology and Environmental Health, Part A 2017;80(23-24): 1276-89. [DOI:10.1080/15287394.2017.1376727] [PMID]
29. Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS nano 2020;14(6): 6383-406. [DOI:10.1021/acsnano.0c03697] [PMID]
30. Kim J, Yeom M, Lee T, et al. Porous gold nanoparticles for attenuating infectivity of influenza A virus. Journal of nanobiotechnology 2020;18(1): 1-11. [DOI:10.1186/s12951-020-00611-8] [PMID] []
31. Du T, Liang J, Dong N, et al. Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding. ACS Applied Materials & Interfaces 2018;10(5): 4369-78. [DOI:10.1021/acsami.7b13811] [PMID]
32. Lin N, Verma D, Saini N, et al. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today 2021;40: 101267. [DOI:10.1016/j.nantod.2021.101267] [PMID] []
33. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581(7807): 221-4. [DOI:10.1038/s41586-020-2179-y] [PMID] []
34. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581(7807): 215-20. [DOI:10.1038/s41586-020-2180-5] [PMID]
35. Eguchi H, Ikeda Y, Koyota S, et al. Oxidative damage due to copper ion and hydrogen peroxide induces GlcNAc-specific cleavage of an Asn-linked oligosaccharide. The journal of biochemistry 2002;131(3): 477-84. [DOI:10.1093/oxfordjournals.jbchem.a003124] [PMID]
36. Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 2015;7(3): 219-42. [DOI:10.1007/s40820-015-0040-x] [PMID] []
37. Chin AW, Chu JT, Perera MR, et al. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe 2020;1(1): e10. [DOI:10.1016/S2666-5247(20)30003-3] [PMID]
38. Bianchi M, Benvenuto D, Giovanetti M, et al. Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? BioMed Research International 2020;2020. [DOI:10.1155/2020/4389089] [PMID] []
39. Kataki S, Chatterjee S, Vairale MG, et al. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resources, Conservation and Recycling 2021;164: 105156. [DOI:10.1016/j.resconrec.2020.105156] [PMID] []
40. Antonelli M, Turolla A, Mezzanotte V, Nurizzo C. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment. Water science and technology 2013;68(12): 2638-44. [DOI:10.2166/wst.2013.542] [PMID]
41. Kim J, Huang C-H. Reactivity of peracetic acid with organic compounds: a critical review. ACS ES&T Water 2020;1(1): 15-33. [DOI:10.1021/acsestwater.0c00029]
42. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities: what clinicians need to know. Clinical infectious diseases 2004;39(5): 702-9. [DOI:10.1086/423182] [PMID]
43. Lasik M, Dobrucka R, Konieczny P. Impedimetric test for rapid determination of performic acid (PFA) biocidal activity toward Echerichia coli. Acta Scientiarum Polonorum Technologia Alimentaria 2013;12(4): 385-94.
44. Ragazzo P, Chiucchini N, Piccolo V, Ostoich M. A new disinfection system for wastewater treatment: performic acid full-scale trial evaluations. Water science and technology 2013;67(11): 2476-87. [DOI:10.2166/wst.2013.137] [PMID]
45. Chhetri RK, Thornberg D, Berner J, et al. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids. Science of the Total Environment 2014;490: 1065-72. [DOI:10.1016/j.scitotenv.2014.05.079] [PMID]
46. Chhetri RK, Flagstad R, Munch ES, et al. Full scale evaluation of combined sewer overflows disinfection using performic acid in a sea-outfall pipe. Chemical Engineering Journal 2015;270: 133-9. [DOI:10.1016/j.cej.2015.01.136]
47. Zhang C-M, Xu L-M, Xu P-C, Wang XC. Elimination of viruses from domestic wastewater: requirements and technologies. World Journal of Microbiology and Biotechnology 2016;32(4): 1-9. [DOI:10.1007/s11274-016-2018-3] [PMID]
48. Organization WH. Water, sanitation, hygiene, and waste management for the COVID-19 virus: interim guidance, 23 April 2020. World Health Organization, 2020.
49. Walker CM, Ko G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environmental science & technology 2007;41(15): 5460-5. [DOI:10.1021/es070056u] [PMID]
50. Tizaoui C. Ozone: a potential oxidant for COVID-19 virus (SARS-CoV-2). Ozone: science & engineering 2020;42(5): 378-85. [DOI:10.1080/01919512.2020.1795614]
51. Zaied B, Rashid M, Nasrullah M, et al. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment 2020;726: 138095. [DOI:10.1016/j.scitotenv.2020.138095] [PMID]
52. Arslan A, Topkaya E, Özbay B, et al. Application of O3/UV/H2O2 oxidation and process optimization for treatment of potato chips manufacturing wastewater. Water and Environment Journal 2017;31(1): 64-71. [DOI:10.1111/wej.12227]
53. Wang X-W, Li J-S, Jin M, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. Journal of virological methods 2005;126(1-2): 171-7. [DOI:10.1016/j.jviromet.2005.02.005] [PMID] []
54. Kampf G. Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infection Prevention in Practice 2020;2(2): 100044. [DOI:10.1016/j.infpip.2020.100044] [PMID] []
55. Emmanuel E, Keck G, Blanchard J-M, et al. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment international 2004;30(7): 891-900. [DOI:10.1016/j.envint.2004.02.004] [PMID]
56. Sanekata T, Fukuda T, Miura T, et al. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol science 2010;15(2): 45-9. [DOI:10.4265/bio.15.45] [PMID]
57. Kim J, Shin B-H, Song KJ, et al. Virucidal effect of gaseous chlorine dioxide on murine coronavirus A59. 2016.
58. Nelson KL, Boehm AB, Davies-Colley RJ, et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Science: Processes & Impacts 2018;20(8): 1089-122. [DOI:10.1039/C8EM00047F] [PMID] []
59. Sagripanti JL, Lytle CD. Estimated inactivation of coronaviruses by solar radiation with special reference to COVID‐19. Photochemistry and photobiology 2020;96(4): 731-7. [DOI:10.1111/php.13293] [PMID] []
60. Al-Gheethi A, Al-Sahari M, Abdul Malek M, et al. Disinfection methods and survival of SARS-CoV-2 in the environment and contaminated materials: a bibliometric analysis. Sustainability 2020;12(18): 7378. [DOI:10.3390/su12187378]
61. Xiling G, Yin C, Ling W, et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Scientific Reports 2021;11(1): 1-9. [DOI:10.1038/s41598-021-82148-w] [PMID] []
62. Zhou Y, Zeng Y, Chen C. Presence of SARS-CoV-2 RNA in isolation ward environment 28 days after exposure. International Journal of Infectious Diseases 2020;97: 258-9. [DOI:10.1016/j.ijid.2020.06.015] [PMID] []
63. Marquès M, Domingo JL. Contamination of inert surfaces by SARS-CoV-2: Persistence, stability and infectivity. A review. Environmental research 2021;193: 110559. [DOI:10.1016/j.envres.2020.110559] [PMID] []
64. Steinhauer K, Meister TL, Todt D, et al. Virucidal efficacy of different formulations for hand and surface disinfection targeting SARS CoV-2. Journal of Hospital Infection 2021;112: 27-30. [DOI:10.1016/j.jhin.2021.03.015] [PMID] []
65. Vaze N, Pyrgiotakis G, McDevitt J, et al. Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers. Nanomedicine: Nanotechnology, Biology and Medicine 2019;18: 234-42. [DOI:10.1016/j.nano.2019.03.003] [PMID] []
66. Pemmada R, Zhu X, Dash M, et al. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials 2020;13(18): 4041. [DOI:10.3390/ma13184041] [PMID] []
67. Vazquez-Munoz R, Lopez-Ribot JL. Nanotechnology as an alternative to reduce the spread of COVID-19. Challenges 2020;11(2): 15. [DOI:10.3390/challe11020015]
68. Park GW, Cho M, Cates EL, et al. Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus. Journal of Photochemistry and Photobiology B: Biology 2014;140: 315-20. [DOI:10.1016/j.jphotobiol.2014.08.009] [PMID] []
69. Hajkova P, Spatenka P, Horsky J, et al. Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Processes and Polymers 2007;4(S1): S397-S401. [DOI:10.1002/ppap.200731007]
70. Jalvo B, Faraldos M, Bahamonde A, Rosal R. Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. Journal of hazardous materials 2017;340: 160-70. [DOI:10.1016/j.jhazmat.2017.07.005] [PMID]
71. Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 2018;81: 536-51. [DOI:10.1016/j.rser.2017.08.020]
72. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine 2011;7(2): 184-92. [DOI:10.1016/j.nano.2010.10.001] [PMID]
73. Qin T, Ma R, Yin Y, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 2019;9(23): 6920. [DOI:10.7150/thno.35826] [PMID] []
74. Kumar R, Nayak M, Sahoo GC, et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. Journal of Infection and Chemotherapy 2019;25(5): 325-9. [DOI:10.1016/j.jiac.2018.12.006] [PMID]
75. Burkitt MJ. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, α-tocopherol, thiols, and ceruloplasmin. Archives of biochemistry and biophysics 2001;394(1): 117-35. [DOI:10.1006/abbi.2001.2509] [PMID]
76. Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014;25(13): 135101. [DOI:10.1088/0957-4484/25/13/135101] [PMID]
77. Abdal Dayem A, Hossain MK, Lee SB, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International journal of molecular sciences 2017;18(1): 120. [DOI:10.3390/ijms18010120] [PMID] []
78. De Dicastillo CL, Correa MG, Martínez FB, et al. Antimicrobial effect of titanium dioxide nanoparticles. Antimicrobial Resistance-A One Health Perspective 2020. [DOI:10.5772/intechopen.90891]
79. Hong Y, Zeng J, Wang X, et al. Post-stress bacterial cell death mediated by reactive oxygen species. Proceedings of the National Academy of Sciences 2019;116(20): 10064-71. [DOI:10.1073/pnas.1901730116] [PMID] []
80. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology journal 2019;16(1): 1-22. [DOI:10.1186/s12985-019-1182-0] [PMID] []
81. Abo-Zeid Y, Ismail NS, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. European Journal of Pharmaceutical Sciences 2020;153: 105465. [DOI:10.1016/j.ejps.2020.105465] [PMID] []
82. Yasuda J, Eguchi H, Fujiwara N, et al. Reactive oxygen species modify oligosaccharides of glycoproteins in vivo: a study of a spontaneous acute hepatitis model rat (LEC rat). Biochemical and biophysical research communications 2006;342(1): 127-34. [DOI:10.1016/j.bbrc.2006.01.118] [PMID]
83. Watanabe Y, Berndsen ZT, Raghwani J, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature communications 2020;11(1): 1-10. [DOI:10.1038/s41467-020-16567-0] [PMID] []
84. Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020;369(6501): 330-3. [DOI:10.1126/science.abb9983] [PMID] []
85. Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochimica et Biophysica Acta (BBA)-General Subjects 2019;1863(10): 1480-97. [DOI:10.1016/j.bbagen.2019.05.012] [PMID] []
86. Naddeo V, Liu H. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): what is its fate in urban water cycle and how can the water research community respond? Environmental Science: Water Research & Technology 2020;6(5): 1213-6. [DOI:10.1039/D0EW90015J]
87. Quilliam RS, Weidmann M, Moresco V, et al. COVID-19: The environmental implications of shedding SARS-CoV-2 in human faeces. Environment International 2020;140: 105790. [DOI:10.1016/j.envint.2020.105790] [PMID] []
88. Amirian ES. Potential fecal transmission of SARS-CoV-2: current evidence and implications for public health. International journal of infectious diseases 2020;95: 363-70. [DOI:10.1016/j.ijid.2020.04.057] [PMID] []
89. Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020;158(6): 1831-3. e3. [DOI:10.1053/j.gastro.2020.02.055] [PMID] []
90. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020;69(6): 997-1001. [DOI:10.1136/gutjnl-2020-321013] [PMID]
91. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The lancet Gastroenterology & hepatology 2020;5(5): 434-5. [DOI:10.1016/S2468-1253(20)30083-2] [PMID]
92. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. Jama 2020;323(18): 1843-4. [DOI:10.1001/jama.2020.3786] [PMID] []
93. Zhang Y, Chen C, Zhu S, et al. Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly 2020;2(8): 123-4. [DOI:10.46234/ccdcw2020.033] [PMID] []
94. Xiao F, Sun J, Xu Y, et al. Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerging infectious diseases 2020;26(8): 1920. [DOI:10.3201/eid2608.200681] [PMID] []
95. Lahrich S, Laghrib F, Farahi A, et al. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. Science of the Total Environment 2021;751: 142325. [DOI:10.1016/j.scitotenv.2020.142325] [PMID] []
96. Wang J, Shen J, Ye D, et al. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environmental pollution 2020;262: 114665. [DOI:10.1016/j.envpol.2020.114665] [PMID] []
97. Sattar S, Springthorpe V, Karim Y, Loro P. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses. Epidemiology & Infection 1989;102(3): 493-505. [DOI:10.1017/S0950268800030211] [PMID] []
98. Council NR, Committee SDW. Drinking Water and Health: Volume 1. 1977.
99. Organization WH. Guidelines for drinking-water quality: World Health Organization. Distribution and Sales, Geneva 2011;27.
100. Kelly S, Sanderson WW. The effect of chlorine in water on enteric viruses. American Journal of Public Health and the Nations Health 1958;48(10): 1323-34. [DOI:10.2105/AJPH.48.10.1323] [PMID] []
101. Kitis M. Disinfection of wastewater with peracetic acid: a review. Environment international 2004;30(1): 47-55. [DOI:10.1016/S0160-4120(03)00147-8] [PMID]
102. Pironti C, Dell'Annunziata F, Giugliano R, et al. Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes. Science of the Total Environment 2021;797: 149206. [DOI:10.1016/j.scitotenv.2021.149206] [PMID]
103. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities: an overview and current issues. Infectious Disease Clinics 2016;30(3): 609-37. [DOI:10.1016/j.idc.2016.04.002] [PMID] []
104. Lazarova V, Janex M, Fiksdal L, et al. Advanced wastewater disinfection technologies: short and long term efficiency. Water Science and Technology 1998;38(12): 109-17. [DOI:10.2166/wst.1998.0516]
105. Luukkonen T, Heyninck T, Rämö J, Lassi U. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion. Water research 2015;85: 275-85. [DOI:10.1016/j.watres.2015.08.037] [PMID]
106. Karpova T, Pekonen P, Gramstad R, et al. Performic acid for advanced wastewater disinfection. Water science and technology 2013;68(9): 2090-6. [DOI:10.2166/wst.2013.468] [PMID]
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nouri Goushki M, Nozari M. Investigating the Effectiveness of Different Disinfectants in Removing the Coronavirus: A Review Study. jehe 2022; 9 (3) :295-312
URL: http://jehe.abzums.ac.ir/article-1-939-fa.html

نوری گوشکی مریم، نوذری مجید. بررسی اثربخشی گندزداهای مختلف درحذف ویروس کرونا: مطالعه مروری. مجله مهندسی بهداشت محیط. 1401; 9 (3) :295-312

URL: http://jehe.abzums.ac.ir/article-1-939-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 3 - ( 3-1401 ) برگشت به فهرست نسخه ها
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.05 seconds with 40 queries by YEKTAWEB 4645