Volume 10, Issue 4 (9-2023)                   J Environ Health Eng 2023, 10(4): 465-478 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mengelizadeh N, Ebadi P, Ghazanfari N, Kohestani S. Evaluation of the performance of heterogeneous electroFenton process with carbon nanotube/Fe@Fe2O3 for the degradation of amoxicillin from aqueous solutions. J Environ Health Eng 2023; 10 (4) :465-478
URL: http://jehe.abzums.ac.ir/article-1-1007-en.html
Department of Environmental Health Engineering, Health Faculty, Larestan University of Medical Sciences, Larestan, Iran
Abstract:   (959 Views)
Background: Effluents discharged from pharmaceutical industries contain toxic and persistent compounds, which have raised concerns among environmentalists in recent decades. Recently, various methods have been used to treat pharmaceutical wastewater, among which the electrooxidation process with its unique features, including high efficiency, low secondary pollutant production, and environmental friendliness, has received more attention. In the present study, the efficiency of heterogeneous electro-Fenton process based on Fe@Fe2O3 nanoparticles loaded on CNTs (CNTs/Fe@Fe2O3) in amoxicillin removal was evaluated.
Methods: In this experimental-laboratory study, CNTs/Fe@Fe2O3 nanoparticles were synthesized as particle electrode and Ti/PbO2 as anode electrode, and their characteristics were determined by scanning electron microscope and X-ray scattering pattern. The effect of operating parameters on the amoxicillin removal rate was evaluated by the heterogeneous electro-Fenton process. Comparative tests were conducted between the adsorption and oxidation processes in antibiotic removal, and finally, the stability of the process based on new electrodes was studied in the cycle of successive electrooxidation reactions
Results: The results showed that the electrochemical and adsorption processes have a lower removal efficiency than the heterogeneous electro-Fenton process at pH close to neutral. The maximum removal efficiency of amoxicillin was obtained at pH of 6, particle electrode dosage of 250 mg/L, current density of 25 mA/cm2, and electrolysis time of 120 min. The stability of the electrodes was confirmed by the cycle of successive reactions.
Conclusion: Based on the findings, the electro-Fenton process based on newly synthesized electrodes can be suggested in the electrooxidation analysis of antibiotics.


Full-Text [PDF 2047 kb]   (394 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/09/22 | Accepted: 2023/10/28 | Published: 2023/12/24

References
1. 1.Sun S-P, Guo H-Q, Ke Q, et al. Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process. Environmental Engineering Science 2009;26(4): 753-9. [DOI:10.1089/ees.2008.0076]
2. Zhang Y, Geißen S-U, Gal C. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008;73(8): 1151-61. [DOI:10.1016/j.chemosphere.2008.07.086] [PMID]
3. Domínguez JR, González T, Palo P, Cuerda-Correa EM. Fenton+ Fenton-like integrated process for carbamazepine degradation: optimizing the system. Industrial & Engineering Chemistry Research 2012;51(6): 2531-8. [DOI:10.1021/ie201980p]
4. Braeutigam P, Franke M, Schneider RJ, et al. Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC). Water research 2012;46(7): 2469-77. [DOI:10.1016/j.watres.2012.02.013] [PMID]
5. Oleszczuk P, Pan B, Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environmental science & technology 2009;43(24): 9167-73. [DOI:10.1021/es901928q] [PMID]
6. Vergili I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. Journal of environmental management 2013;127: 177-87. [DOI:10.1016/j.jenvman.2013.04.036] [PMID]
7. Hu L, Martin HM, Arce-Bulted O, et al. Oxidation of carbamazepine by Mn (VII) and Fe (VI): reaction kinetics and mechanism. Environmental Science & Technology 2008;43(2): 509-15. [DOI:10.1021/es8023513] [PMID]
8. Carabin A, Drogui P, Robert D. Photocatalytic oxidation of carbamazepine: application of an experimental design methodology. Water, Air, & Soil Pollution 2016;227(4): 122. [DOI:10.1007/s11270-016-2819-x]
9. Özcan A, Şahin Y, Koparal AS, Oturan MA. A comparative study on the efficiency of electro-Fenton process in the removal of propham from water. Applied Catalysis B: Environmental 2009;89(3): 620-6. [DOI:10.1016/j.apcatb.2009.01.022]
10. Ahmed MM, Chiron S. Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater. water research 2014;48: 229-36. [DOI:10.1016/j.watres.2013.09.033] [PMID]
11. Bocos E, Iglesias O, Pazos M, Sanromán MÁ. Nickel foam a suitable alternative to increase the generation of Fenton's reagents. Process Safety and Environmental Protection 2016;101: 34-44. [DOI:10.1016/j.psep.2015.04.011]
12. Nidheesh P, Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 2012;299: 1-15. [DOI:10.1016/j.desal.2012.05.011]
13. Ting W-P, Lu M-C, Huang Y-H. Kinetics of 2, 6-dimethylaniline degradation by electro-Fenton process. Journal of Hazardous Materials 2009;161(2): 1484-90. [DOI:10.1016/j.jhazmat.2008.04.119] [PMID]
14. Anotai J, Singhadech S, Su C-C, Lu M-C. Comparison of o-toluidine degradation by Fenton, electro-Fenton and photoelectro-Fenton processes. Journal of hazardous materials 2011;196: 395-401. [DOI:10.1016/j.jhazmat.2011.09.043] [PMID]
15. Rosales E, Iglesias O, Pazos M, Sanromán M. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. Journal of hazardous materials 2012;213: 369-77. [DOI:10.1016/j.jhazmat.2012.02.005] [PMID]
16. Rosales E, Pazos M, Longo M, Sanromán M. Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chemical Engineering Journal 2009;155(1): 62-7. [DOI:10.1016/j.cej.2009.06.028]
17. Hou B, Han H, Jia S, et al. Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe 3 O 4: kinetics with the Fermi's equation. Journal of the Taiwan Institute of Chemical Engineers 2015;56: 138-47. [DOI:10.1016/j.jtice.2015.04.017]
18. Shen L, Yan P, Guo X, et al. Three-Dimensional Electro-Fenton Degradation of Methyleneblue Based on the Composite Particle Electrodes of Carbon Nanotubes and Nano-FeO. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 2014;39(9). [DOI:10.1007/s13369-014-1184-6]
19. Bonyadinejad G, Sarafraz M, Khosravi M, et al. Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology. Korean Journal of Chemical Engineering 2016;33(1): 189-96. [DOI:10.1007/s11814-015-0115-x]
20. Polcaro A, Palmas S, Renoldi F, Mascia M. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment. Journal of Applied Electrochemistry 1999;29(2): 147-51. [DOI:10.1023/A:1003411906212]
21. Barrera-Díaz C, Cañizares P, Fernández F, et al. Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. Journal of the Mexican Chemical Society 2014;58(3): 256-75. [DOI:10.29356/jmcs.v58i3.133]
22. Hou B, Han H, Zhuang H, et al. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater. Bioresource technology 2015;196: 721-5. [DOI:10.1016/j.biortech.2015.07.068] [PMID]
23. Hou B, Ren B, Deng R, et al. Three-dimensional electro-Fenton oxidation of N-heterocyclic compounds with a novel catalytic particle electrode: high activity, wide pH range and catalytic mechanism. RSC Advances 2017;7(25): 15455-62. [DOI:10.1039/C7RA00361G]
24. Shi J, Ai Z, Zhang L. Fe@ Fe 2 O 3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe (III)/Fe (II) cycles. Water research 2014;59: 145-53. [DOI:10.1016/j.watres.2014.04.015] [PMID]
25. Shen W, Lin F, Jiang X, et al. Efficient removal of bromate with core-shell Fe@ Fe 2 O 3 nanowires. Chemical Engineering Journal 2017;308: 880-8. [DOI:10.1016/j.cej.2016.09.070]
26. Liu W, Ai Z, Cao M, Zhang L. Ferrous ions promoted aerobic simazine degradation with Fe@ Fe 2 O 3 core-shell nanowires. Applied Catalysis B: Environmental 2014;150: 1-11. [DOI:10.1016/j.apcatb.2013.11.034]
27. Liao Q, Sun J, Gao L. Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009;345(1-3): 95-100. [DOI:10.1016/j.colsurfa.2009.04.037]
28. Danish M, Gu X, Lu S, et al. Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chemical Engineering Journal 2017;308: 396-407. [DOI:10.1016/j.cej.2016.09.051]
29. Choi H, Al-Abed SR, Agarwal S, Dionysiou DD. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials 2008;20(11): 3649-55. [DOI:10.1021/cm8003613]
30. Liu X, Chen Z, Chen Z, et al. Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chemical engineering journal 2013;223: 764-71. [DOI:10.1016/j.cej.2013.03.002]
31. Lingaiah N, Prasad PS, Rao PK, et al. Structure and activity of microwave irradiated silica supported Pd-Fe bimetallic catalysts in the hydrodechlorination of chlorobenzene. Catalysis Communications 2002;3(9): 391-7. [DOI:10.1016/S1566-7367(02)00159-0]
32. Pourzamani H, Hajizadeh Y, Mengelizadeh N. Application of three-dimensional electrofenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac. Process Safety and Environmental Protection 2018;119: 271-84. [DOI:10.1016/j.psep.2018.08.014]
33. Garcia J, Gomes H, Serp P, et al. Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon 2006;44(12): 2384-91. [DOI:10.1016/j.carbon.2006.05.035]
34. Zhang A, Dong J, Xu Q, et al. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catalysis today 2004;93: 347-52. [DOI:10.1016/j.cattod.2004.06.122]
35. Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General 2003;253(2): 337-58. [DOI:10.1016/S0926-860X(03)00549-0]
36. Zhu L, Ai Z, Ho W, Zhang L. Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange. Separation and Purification Technology 2013;108: 159-65. [DOI:10.1016/j.seppur.2013.02.016]
37. Pourzamani H, Mengelizadeh N, Mohammadi H, et al. Comparison of electrochemical advanced oxidation processes for removal of ciprofloxacin from aqueous solutions. Desalination and Water Treatment 2018;113: 307-18. [DOI:10.5004/dwt.2018.22275]
38. Iranpour F, Pourzamani H, Mengelizadeh N, et al. Application of response surface methodology for optimization of reactive black 5 removal by three dimensional electro-Fenton process. Journal of Environmental Chemical Engineering 2018;6(2): 3418-35. [DOI:10.1016/j.jece.2018.05.023]
39. Zhang B, Hou Y, Yu Z, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes: Electrodes optimization, kinetics, influencing factors and mechanism. Separation and Purification Technology 2019;210: 60-8. [DOI:10.1016/j.seppur.2018.07.084]
40. Panizza M, Cerisola G. Electro-Fenton degradation of synthetic dyes. Water research 2009;43(2): 339-44. [DOI:10.1016/j.watres.2008.10.028] [PMID]
41. Nidheesh P, Gandhimathi R, Velmathi S, Sanjini N. Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. Rsc Advances 2014;4(11): 5698-708. [DOI:10.1039/c3ra46969g]
42. Özcan A, Özcan AA, Demirci Y, Şener E. Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Applied Catalysis B: Environmental 2017;200: 361-71. [DOI:10.1016/j.apcatb.2016.07.018]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Journal of Environmental Health Engineering

Designed & Developed by : Yektaweb