1. Thouennon E, Delfosse V, Bailly R, et al. Insights into the activation mechanism of human estrogen-related receptor γ by environmental endocrine disruptors. Cellular and molecular life sciences 2019;76: 4769-81. [ DOI:10.1007/s00018-019-03129-x] [ PMID] [ ] 2. De Mes T, Zeeman G, Lettinga G. Occurrence and fate of estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for domestic wastewater. Reviews in environmental science and bio/technology 2005;4: 275-311. [ DOI:10.1007/s11157-005-3216-x] 3. Yaping Z, Jiangyong H. Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2. Applied Catalysis B: Environmental 2008;78(3-4): 250-8. [ DOI:10.1016/j.apcatb.2007.09.026] 4. An J, Choi K, Yang S, Nam K. Estimation of human-origin estrone and 17β-estradiol concentrations in the Han River, Seoul, South Korea and its uncertainty-based ecological risk characterization. Science of the total environment 2018;633: 1148-55. [ DOI:10.1016/j.scitotenv.2018.03.248] [ PMID] 5. Combalbert S, Hernandez-Raquet G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. Applied microbiology and biotechnology 2010;86: 1671-92. [ DOI:10.1007/s00253-010-2547-x] [ PMID] 6. Ribeiro ARL, Moreira NF, Puma GL, Silva AM. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal 2019;363: 155-73. [ DOI:10.1016/j.cej.2019.01.080] 7. Gao L, Sun L, Wan S, et al. Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: The case of 17β-Estradiol. Chemical engineering journal 2013;228: 790-8. [ DOI:10.1016/j.cej.2013.05.079] 8. Sharma VK. Potassium ferrate (VI): an environmentally friendly oxidant. Advances in Environmental Research 2002;6(2): 143-56. [ DOI:10.1016/S1093-0191(01)00119-8] 9. Sharma VK, Li X, Graham N, Doong R-a. Ferrate (VI) oxidation of endocrine disruptors and antimicrobials in water. Journal of Water Supply: Research and Technology-AQUA 2008;57(6): 419-26. [ DOI:10.2166/aqua.2008.077] 10. Sharma VK, Mishra SK, Nesnas N. Oxidation of sulfonamide antimicrobials by ferrate (VI)[FeVIO42-]. Environmental Science & Technology 2006;40(23): 7222-7. [ DOI:10.1021/es060351z] [ PMID] 11. Sharma V. Disinfection performance of Fe (VI) in water and wastewater: a review. Water science and Technology 2007;55(1-2): 225-32. [ DOI:10.2166/wst.2007.019] [ PMID] 12. Li H, Li S, Srinivasakannan C, et al. Microwave regeneration of spent catalyst coupled with ultrasound augmented copper impregnation as a potential adsorbent photocatalyst. Materials Research Express 2019;6(4): 045608. [ DOI:10.1088/2053-1591/aafa09] 13. Zhao T, Li P, Tai C, et al. Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide. Journal of hazardous materials 2018;346: 42-51. [ DOI:10.1016/j.jhazmat.2017.12.009] [ PMID] 14. Choi AES, Roces S, Dugos N, et al. Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI). Journal of the Taiwan Institute of Chemical Engineers 2014;45(6): 2935-42. [ DOI:10.1016/j.jtice.2014.08.003] 15. Dong F, Li C, Ma X, et al. Degradation of estriol by chlorination in a pilot-scale water distribution system: Kinetics, pathway and DFT studies. Chemical Engineering Journal 2020;383: 123187. [ DOI:10.1016/j.cej.2019.123187] 16. Tak S, Vellanki BP. Applicability of advanced oxidation processes in removing anthropogenically influenced chlorination disinfection byproduct precursors in a developing country. Ecotoxicology and Environmental Safety 2019;186: 109768. [ DOI:10.1016/j.ecoenv.2019.109768] [ PMID] 17. Gao Y-q, Gao N-y, Chu W-h, et al. UV-activated persulfate oxidation of sulfamethoxypyridazine: Kinetics, degradation pathways and impact on DBP formation during subsequent chlorination. Chemical Engineering Journal 2019;370: 706-15. [ DOI:10.1016/j.cej.2019.03.237] 18. Jyothi K, Yesodharan S, Yesodharan E. Ultrasound (US), Ultraviolet light (UV) and combination (US+ UV) assisted semiconductor catalysed degradation of organic pollutants in water: Oscillation in the concentration of hydrogen peroxide formed in situ. Ultrasonics sonochemistry 2014;21(5): 1787-96. [ DOI:10.1016/j.ultsonch.2014.03.019] [ PMID] 19. Bahrami H, Eslami A, Nabizadeh R, et al. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology. Journal of cleaner production 2018;198: 1210-8. [ DOI:10.1016/j.jclepro.2018.07.100] 20. Han J, Liu Y, Singhal N, et al. Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal 2012;213: 150-62. [ DOI:10.1016/j.cej.2012.09.066] 21. Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research 2004;38(17): 3751-9. [ DOI:10.1016/j.watres.2004.06.002] [ PMID] 22. Şahinkaya S. Decolorization of reactive orange 16 via ferrate (VI) oxidation assisted by sonication. Turkish Journal of Chemistry 2017;41(4): 577-86. [ DOI:10.3906/kim-1701-8] 23. Wang H, Liu Y, Jiang J-Q. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI). Chemosphere 2016;155: 583-90. [ DOI:10.1016/j.chemosphere.2016.04.088] [ PMID] 24. Zhang K, Luo Z, Zhang T, et al. Degradation Effect of Sulfa Antibiotics by Potassium Ferrate Combined with Ultrasound (Fe (VI)‐US). BioMed Research International 2015;2015(1): 169215. [ DOI:10.1155/2015/169215] [ PMID] [ ] 25. He G, Li C, Dong F, et al. Chloramines in a pilot-scale water distribution system: Transformation of 17β-estradiol and formation of disinfection byproducts. Water Research 2016;106: 41-50. [ DOI:10.1016/j.watres.2016.09.047] [ PMID] 26. Moradi M, Vasseghian Y, Khataee A, et al. Ultrasound‐assisted synthesis of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation. Separation and Purification Technology 2021;261: 118274. [ DOI:10.1016/j.seppur.2020.118274] 27. Arnold WA, Bolotin J, Gunten Uv, Hofstetter TB. Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis. Environmental science & technology 2008;42(21): 7778-85. [ DOI:10.1021/es800399a] [ PMID] 28. Deng L, Huang C-H, Wang Y-L. Effects of combined UV and chlorine treatment on the formation of trichloronitromethane from amine precursors. Environmental science & technology 2014;48(5): 2697-705. [ DOI:10.1021/es404116n] [ PMID] 29. Fiss EM, Rule KL, Vikesland PJ. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environmental science & technology 2007;41(7): 2387-94. [ DOI:10.1021/es062227l] [ PMID] 30. Gallard H, Von Gunten U. Chlorination of phenols: kinetics and formation of chloroform. Environmental Science & Technology 2002;36(5): 884-90. [ DOI:10.1021/es010076a] [ PMID] 31. Jin J, El-Din MG, Bolton JR. Assessment of the UV/chlorine process as an advanced oxidation process. Water research 2011;45(4): 1890-6. [ DOI:10.1016/j.watres.2010.12.008] [ PMID]
|