1. 1. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical engineering journal 2013;217: 119-28. [ DOI:10.1016/j.cej.2012.11.069] 2. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology letters 2002;131(1-2): 5-17. [ DOI:10.1016/S0378-4274(02)00041-3] [ PMID] 3. Magureanu M, Piroi D, Mandache N, et al. Degradation of antibiotics in water by non-thermal plasma treatment. Water research 2011;45(11): 3407-16. [ DOI:10.1016/j.watres.2011.03.057] [ PMID] 4. Ferrari B, Mons R, Vollat B, et al. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry: An International Journal 2004;23(5): 1344-54. [ DOI:10.1897/03-246] [ PMID] 5. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, et al. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. Journal of environmental management 2012;98: 168-74. [ DOI:10.1016/j.jenvman.2012.01.010] [ PMID] 6. Çağlar Yılmaz H, Akgeyik E, Bougarrani S, et al. Photocatalytic degradation of amoxicillin using Co-doped TiO2 synthesized by reflux method and monitoring of degradation products by LC-MS/MS. Journal of Dispersion Science and Technology 2020;41(3): 414-25. [ DOI:10.1080/01932691.2019.1583576] 7. Kattel E, Kaur B, Trapido M, Dulova N. Persulfate-based photodegradation of a beta-lactam antibiotic amoxicillin in various water matrices. Environmental technology 2020;41(2): 202-10. [ DOI:10.1080/09593330.2018.1493149] [ PMID] 8. Pirsaheb M, Hosseini H, Mohamadi Sorkali H, et al. preconcentration and determination of amoxicillin and ceftriaxone in hospital sewage using vortex-assisted liquid- phase microextraction based on the solidification of the deep eutectic solvent followed by HPLC-UV. International journal of environmental analytical chemistry 2019;99(2): 112-23. [ DOI:10.1080/03067319.2019.1576866] 9. Salimi M, Behbahani M, Sobhi HR, et al. A new nano-photocatalyst based on Pt and Bi co-doped TiO 2 for efficient visible-light photo degradation of amoxicillin. New Journal of Chemistry 2019;43(3): 1562-8. [ DOI:10.1039/C8NJ05020A] 10. Zhao J, Sun Y, Wu F, et al. Oxidative degradation of amoxicillin in aqueous solution by thermally activated persulfate. Journal of Chemistry 2019;2019(1): 2505823. [ DOI:10.1155/2019/2505823] 11. Ike IA, Linden KG, Orbell JD, Duke M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal 2018;338: 651-69. [ DOI:10.1016/j.cej.2018.01.034] 12. Liu C, Wu B. Sulfate radical-based oxidation for sludge treatment: a review. Chemical Engineering Journal 2018;335: 865-75. [ DOI:10.1016/j.cej.2017.10.162] 13. Duan X, Sun H, Tade M, Wang S. Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catalysis Today 2018;307: 140-6. [ DOI:10.1016/j.cattod.2017.04.038] 14. Pirsaheb M, Moradi S, Shahlaei M, Farhadian N. Application of carbon dots as efficient catalyst for the green oxidation of phenol: kinetic study of the degradation and optimization using response surface methodology. Journal of hazardous materials 2018;353: 444-53. [ DOI:10.1016/j.jhazmat.2018.04.038] [ PMID] 15. Chen Q, Chen L, Qi J, et al. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength. Chinese Chemical Letters 2019;30(6): 1214-8. [ DOI:10.1016/j.cclet.2019.03.002] 16. Pan J, Sheng Y, Zhang J, et al. Preparation of carbon quantum dots/TiO 2 nanotubes composites and their visible light catalytic applications. Journal of Materials Chemistry A 2014;2(42): 18082-6. [ DOI:10.1039/C4TA03528C] 17. Kalantary RR, Rahmatinia M, Moradi M. Data on modeling of UV/Na2S2O8/FeS2 process in amoxicillin removal using Box-Behnken methodology. Data in Brief 2018;19: 1810-5. [ DOI:10.1016/j.dib.2018.06.109] [ PMID] [ ] 18. Amiri R, Rezaei A, Fattahi N, et al. Carbon quantum dots decorated Ag/CuFe2O4 for persulfate-assisted visible light photocatalytic degradation of tetracycline: A comparative study. Journal of Water Process Engineering 2022;47: 102742. [ DOI:10.1016/j.jwpe.2022.102742] 19. Chunduri L, Kurdekar A, Patnaik S, et al. Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Materials Focus 2016;5(1): 55-61. [ DOI:10.1166/mat.2016.1289] 20. Li H, Liu R, Liu Y, et al. Carbon quantum dots/Cu 2 O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry 2012;22(34): 17470-5. [ DOI:10.1039/c2jm32827e] 21. Lebik-Elhadi H, Frontistis Z, Ait-Amar H, et al. Degradation of pesticide thiamethoxam by heat-activated and ultrasound-activated persulfate: effect of key operating parameters and the water matrix. Process Safety and Environmental Protection 2020;134: 197-207. [ DOI:10.1016/j.psep.2019.11.041] 22. Ayuba S, Mohammadib AA, Yousefic M, Changanic F. Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. Desalination and Water Treatment 2019;142: 293-9. [ DOI:10.5004/dwt.2019.23455] 23. Norzaee S, Taghavi M, Djahed B, Mostafapour FK. Degradation of Penicillin G by heat activated persulfate in aqueous solution. Journal of environmental management 2018;215: 316-23. [ DOI:10.1016/j.jenvman.2018.03.038] [ PMID] 24. Gao Y, Wang Q, Ji G, Li A. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chemical Engineering Journal 2022;429: 132387. [ DOI:10.1016/j.cej.2021.132387] 25. Kumar S, Tewari C, Sahoo NG, Philip L. Mechanistic insights into carbo-catalyzed persulfate treatment for simultaneous degradation of cationic and anionic dye in multicomponent mixture using plastic waste-derived carbon. Journal of Hazardous Materials 2022;435: 128956. [ DOI:10.1016/j.jhazmat.2022.128956] [ PMID] 26. Chen M-M, Niu H-Y, Niu C-G, et al. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation. Journal of Hazardous Materials 2022;424: 127196. [ DOI:10.1016/j.jhazmat.2021.127196] [ PMID] 27. Mensah K, Samy M, Ezz H, et al. Utilization of iron waste from steel industries in persulfate activation for effective degradation of dye solutions. Journal of Environmental Management 2022;314: 115108. [ DOI:10.1016/j.jenvman.2022.115108] [ PMID] 28. Sang W, Xu X, Zhan C, et al. Recent advances of antibiotics degradation in different environment by iron-based catalysts activated persulfate: A review. Journal of Water Process Engineering 2022;49: 103075. [ DOI:10.1016/j.jwpe.2022.103075] 29. Li L, Zhang Y, Yang S, et al. Cobalt-loaded cherry core biochar composite as an effective heterogeneous persulfate catalyst for bisphenol A degradation. RSC advances 2022;12(12): 7284-94. [ DOI:10.1039/D1RA09236G] [ PMID] [ ] 30. Sepyani F, Soltani RDC, Jorfi S, et al. Implementation of continuously electro-generated Fe3O4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification. Journal of environmental management 2018;224: 315-26. [ DOI:10.1016/j.jenvman.2018.07.072] [ PMID]
|