[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Accepted articles :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing::
Open Access Policy::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 3 (5-2024) ::
jehe 2024, 11(3): 256-267 Back to browse issues page
Assessing the Efficacy of the Combined Carbon Quantum Dots - Persulfate Process for the Removal of Amoxicillin from Aqueous Solutions
Kiomars Sharfi , Nazir Fattahi , Masoud Moradi *
Research Center for Environmental determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
Abstract:   (335 Views)
Background: Antibiotics are increasingly recognized as emerging pollutants, posing significant environmental concerns upon entering ecosystems. Consequently, this study aimed to investigate the oxidation of the antibiotic amoxicillin using the carbon quantum dots/persulfate process.
Methods: All experiments were conducted in a 250 mL glass container. The effects of various operating parameters, including reaction time, pH, amoxicillin concentration, persulfate concentration, and catalyst dose, were investigated under optimal conditions to assess their influence on the removal efficiency.
Results: The results demonstrate that the carbon quantum dots/persulfate process exhibited the highest decomposition rate (kobs) of amoxicillin, with a rate constant of 0.0127 min-1. The optimal conditions for maximum antibiotic removal were found to be pH 5, a persulfate dose of 2 mM, and an amoxicillin concentration of 12.5 mg/L, resulting in a removal rate of 89% within 75 minutes. Furthermore, the mineralization rate was observed to be 33%.
Conclusion: The findings of this study demonstrate the efficacy of the carbon quantum dot/persulfate process in oxidizing amoxicillin.
Keywords: Amoxicillin, Carbon Quantum Dot, Persulfate, Advanced Oxidation Process
Full-Text [PDF 902 kb]   (176 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/06/8 | Accepted: 2024/06/12 | Published: 2024/07/9
References
1. 1. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical engineering journal 2013;217: 119-28. [DOI:10.1016/j.cej.2012.11.069]
2. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology letters 2002;131(1-2): 5-17. [DOI:10.1016/S0378-4274(02)00041-3] [PMID]
3. Magureanu M, Piroi D, Mandache N, et al. Degradation of antibiotics in water by non-thermal plasma treatment. Water research 2011;45(11): 3407-16. [DOI:10.1016/j.watres.2011.03.057] [PMID]
4. Ferrari B, Mons R, Vollat B, et al. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry: An International Journal 2004;23(5): 1344-54. [DOI:10.1897/03-246] [PMID]
5. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, et al. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. Journal of environmental management 2012;98: 168-74. [DOI:10.1016/j.jenvman.2012.01.010] [PMID]
6. Çağlar Yılmaz H, Akgeyik E, Bougarrani S, et al. Photocatalytic degradation of amoxicillin using Co-doped TiO2 synthesized by reflux method and monitoring of degradation products by LC-MS/MS. Journal of Dispersion Science and Technology 2020;41(3): 414-25. [DOI:10.1080/01932691.2019.1583576]
7. Kattel E, Kaur B, Trapido M, Dulova N. Persulfate-based photodegradation of a beta-lactam antibiotic amoxicillin in various water matrices. Environmental technology 2020;41(2): 202-10. [DOI:10.1080/09593330.2018.1493149] [PMID]
8. Pirsaheb M, Hosseini H, Mohamadi Sorkali H, et al. preconcentration and determination of amoxicillin and ceftriaxone in hospital sewage using vortex-assisted liquid- phase microextraction based on the solidification of the deep eutectic solvent followed by HPLC-UV. International journal of environmental analytical chemistry 2019;99(2): 112-23. [DOI:10.1080/03067319.2019.1576866]
9. Salimi M, Behbahani M, Sobhi HR, et al. A new nano-photocatalyst based on Pt and Bi co-doped TiO 2 for efficient visible-light photo degradation of amoxicillin. New Journal of Chemistry 2019;43(3): 1562-8. [DOI:10.1039/C8NJ05020A]
10. Zhao J, Sun Y, Wu F, et al. Oxidative degradation of amoxicillin in aqueous solution by thermally activated persulfate. Journal of Chemistry 2019;2019(1): 2505823. [DOI:10.1155/2019/2505823]
11. Ike IA, Linden KG, Orbell JD, Duke M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal 2018;338: 651-69. [DOI:10.1016/j.cej.2018.01.034]
12. Liu C, Wu B. Sulfate radical-based oxidation for sludge treatment: a review. Chemical Engineering Journal 2018;335: 865-75. [DOI:10.1016/j.cej.2017.10.162]
13. Duan X, Sun H, Tade M, Wang S. Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catalysis Today 2018;307: 140-6. [DOI:10.1016/j.cattod.2017.04.038]
14. Pirsaheb M, Moradi S, Shahlaei M, Farhadian N. Application of carbon dots as efficient catalyst for the green oxidation of phenol: kinetic study of the degradation and optimization using response surface methodology. Journal of hazardous materials 2018;353: 444-53. [DOI:10.1016/j.jhazmat.2018.04.038] [PMID]
15. Chen Q, Chen L, Qi J, et al. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength. Chinese Chemical Letters 2019;30(6): 1214-8. [DOI:10.1016/j.cclet.2019.03.002]
16. Pan J, Sheng Y, Zhang J, et al. Preparation of carbon quantum dots/TiO 2 nanotubes composites and their visible light catalytic applications. Journal of Materials Chemistry A 2014;2(42): 18082-6. [DOI:10.1039/C4TA03528C]
17. Kalantary RR, Rahmatinia M, Moradi M. Data on modeling of UV/Na2S2O8/FeS2 process in amoxicillin removal using Box-Behnken methodology. Data in Brief 2018;19: 1810-5. [DOI:10.1016/j.dib.2018.06.109] [PMID] []
18. Amiri R, Rezaei A, Fattahi N, et al. Carbon quantum dots decorated Ag/CuFe2O4 for persulfate-assisted visible light photocatalytic degradation of tetracycline: A comparative study. Journal of Water Process Engineering 2022;47: 102742. [DOI:10.1016/j.jwpe.2022.102742]
19. Chunduri L, Kurdekar A, Patnaik S, et al. Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Materials Focus 2016;5(1): 55-61. [DOI:10.1166/mat.2016.1289]
20. Li H, Liu R, Liu Y, et al. Carbon quantum dots/Cu 2 O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry 2012;22(34): 17470-5. [DOI:10.1039/c2jm32827e]
21. Lebik-Elhadi H, Frontistis Z, Ait-Amar H, et al. Degradation of pesticide thiamethoxam by heat-activated and ultrasound-activated persulfate: effect of key operating parameters and the water matrix. Process Safety and Environmental Protection 2020;134: 197-207. [DOI:10.1016/j.psep.2019.11.041]
22. Ayuba S, Mohammadib AA, Yousefic M, Changanic F. Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. Desalination and Water Treatment 2019;142: 293-9. [DOI:10.5004/dwt.2019.23455]
23. Norzaee S, Taghavi M, Djahed B, Mostafapour FK. Degradation of Penicillin G by heat activated persulfate in aqueous solution. Journal of environmental management 2018;215: 316-23. [DOI:10.1016/j.jenvman.2018.03.038] [PMID]
24. Gao Y, Wang Q, Ji G, Li A. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chemical Engineering Journal 2022;429: 132387. [DOI:10.1016/j.cej.2021.132387]
25. Kumar S, Tewari C, Sahoo NG, Philip L. Mechanistic insights into carbo-catalyzed persulfate treatment for simultaneous degradation of cationic and anionic dye in multicomponent mixture using plastic waste-derived carbon. Journal of Hazardous Materials 2022;435: 128956. [DOI:10.1016/j.jhazmat.2022.128956] [PMID]
26. Chen M-M, Niu H-Y, Niu C-G, et al. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation. Journal of Hazardous Materials 2022;424: 127196. [DOI:10.1016/j.jhazmat.2021.127196] [PMID]
27. Mensah K, Samy M, Ezz H, et al. Utilization of iron waste from steel industries in persulfate activation for effective degradation of dye solutions. Journal of Environmental Management 2022;314: 115108. [DOI:10.1016/j.jenvman.2022.115108] [PMID]
28. Sang W, Xu X, Zhan C, et al. Recent advances of antibiotics degradation in different environment by iron-based catalysts activated persulfate: A review. Journal of Water Process Engineering 2022;49: 103075. [DOI:10.1016/j.jwpe.2022.103075]
29. Li L, Zhang Y, Yang S, et al. Cobalt-loaded cherry core biochar composite as an effective heterogeneous persulfate catalyst for bisphenol A degradation. RSC advances 2022;12(12): 7284-94. [DOI:10.1039/D1RA09236G] [PMID] []
30. Sepyani F, Soltani RDC, Jorfi S, et al. Implementation of continuously electro-generated Fe3O4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification. Journal of environmental management 2018;224: 315-26. [DOI:10.1016/j.jenvman.2018.07.072] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharfi K, Fattahi N, Moradi M. Assessing the Efficacy of the Combined Carbon Quantum Dots - Persulfate Process for the Removal of Amoxicillin from Aqueous Solutions. jehe 2024; 11 (3) :256-267
URL: http://jehe.abzums.ac.ir/article-1-1047-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 3 (5-2024) Back to browse issues page
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4660