Volume 13, Issue 1 (4-2025)                   J Environ Health Eng 2025, 13(1): 91-107 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shaker kouhi S, Rabiee M. Strategies for reducing arsenic accumulation in rice grains: A systematic review. J Environ Health Eng 2025; 13 (1) :91-107
URL: http://jehe.abzums.ac.ir/article-1-1103-en.html
Department of Agronomy and Plant Breeding, Rice Research Institute, Rasht, Iran
Abstract:   (46 Views)

Background: Arsenic (As) is one of the most toxic heavy metals posing a serious threat to human health by affecting the food chain. Compared to other cereals, rice has a high potential for As accumulation due to growth in flooded conditions. Therefore, it is essential to develop strategies for reducing As accumulation in rice grain. Accordingly, the present study was conducted with the aim of investigating the strategies for reducing As accumulation in rice grain.
Materials and Methods: In the initial search of articles, a total of 164 articles published between 2004 and 2024, and were reduced after removing duplicates to 126 articles. Then, in the screening stage, the title and abstract of the articles were reviewed and at the end, 92 articles remained. The full text of the screened articles was studied and finally, 68 articles were used in this study.
Results: The results showed that water management practices such as intermittent irrigation can help reduce As content of rice plants due to changing the redox status of the soil. In addition, As uptake and toxicity in rice can be reduced by the application of organic amendments (biochar and organic fertilizers) and inorganic amendments (iron, silicon and sulfur). Another way to reduce arsenic absorption by rice is the use of nanotechnology. Selection of low As accumulating rice cultivars and inoculation with microorganisms are among the other agronomic practices successfully employed for reducing As concentration in rice grains.
Conclusion: The use of appropriate management practices can enhance rice tolerance to As stress and reduce entry into the food chain.

Full-Text [PDF 693 kb]   (15 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2025/02/22 | Accepted: 2025/03/29 | Published: 2025/04/16

References
1. Bundschuh J, Niazi NK, Alam MA, et al. Global arsenic dilemma and sustainability. Journal of Hazardous Materials 2022;436: 129197. [DOI:10.1016/j.jhazmat.2022.129197]
2. Chen WQ, Shi YL, Wu SL, et al. Anthropogenic arsenic cycles: A research framework and features. Journal of Cleaner Production 2016;139: 328-336. [DOI:10.1016/j.jclepro.2016.08.050]
3. Singh S, Rajput VD, Upadhyay SK, et al. Arsenic Contamination in Rice Agro-ecosystems: Mitigation Strategies for Safer Crop Production. Journal of Plant Growth Regulation 2023;42: 6413-6424. [DOI:10.1007/s00344-022-10863-3]
4. Saha A, Sen Gupta B, Patidar S, et al. Identification of Soil Arsenic Contamination in Rice Paddy Field Based on Hyperspectral Reflectance Approach. Soil System 2022;6: 30. [DOI:10.3390/soilsystems6010030]
5. Mandal J, Sengupta S, Sarkar S, et al. Meta-Analysis Enables Prediction of the Maximum Permissible Arsenic Concentration in Asian Paddy Soil. Frontiers in Environmental Science 2021;9: 760125. [DOI:10.3389/fenvs.2021.760125]
6. Mawia AM, Hui S, Zhou L, et al. Inorganic arsenic toxicity and alleviation strategies in rice. Journal of Hazardous Materials 2021;408: 124751. [DOI:10.1016/j.jhazmat.2020.124751]
7. Tripathi RD, Tripathi P, Dwivedi S, et al. Arsenomics: omics of arsenic metabolism in plants. Frontiers in Physiology 2012;23: 3-275. [DOI:10.3389/fphys.2012.00275]
8. Souri Z, Karimi N, de Oliveira LM. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology 2018;39: 1316-1327. [DOI:10.1080/09593330.2017.1329349]
9. Mitra A, Chatterjee S, Moogouei R, et al. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy 2017;7(4): 67. [DOI:10.3390/agronomy7040067]
10. Shikawa S, Arao T, Makino T. Agronomic strategies for reducing arsenic risk in rice, in Arsenic Contamination in Asia, (eds) Yamauchi H, Sun G. Singapore: Springer, 2019; 181-198. [DOI:10.1007/978-981-13-2565-6_11]
11. Liu J, Liu HB, Liu R, et al. Water Quality in Irrigated Paddy Systems. Irrigation in Agroecosystems. Intech Open, London, United Kingdom; 2018. [DOI:10.5772/intechopen.77339]
12. Uda MNA, Gopinath SCB, Hashim U, et al. Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up. Sustainability 2023;15(3): 2633. [DOI:10.3390/su15032633]
13. Ali W, Rasool A, Junaid M, et al. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health 2019;41: 737-760. [DOI:10.1007/s10653-018-0169-x]
14. Shaji E, Santosh M, Sarath K, et al. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geoscience Frontiers 2021;12: 101079. [DOI:10.1016/j.gsf.2020.08.015]
15. Shaker Kouhi S, Rabiee M. Effect of intercropping on the Cd accumulation in soil and rice plants: A review. Journal of Environmental Health Engineering 2024;11(3): 287-301 [in Persian]. [DOI:10.61186/jehe.11.3.287]
16. Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science and Technology 2016;50: 4178-4185. [DOI:10.1021/acs.est.5b05424]
17. Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science and Technology 2007;41: 6854-6859. [DOI:10.1021/es070627i]
18. Gonzalez ME, Stahl C, Cruz MT, et al. Contrasting the size-resolved nature of particulate arsenic, cadmium, and lead among diverse regions. Atmospheric Pollution Research 2021;48: 85-95. [DOI:10.1016/j.apr.2021.01.002]
19. Majumdar A, Barla A, Upadhyay MK, et al. Vermiremediation of metal (loid)s via Eichornia crassipes phytomass extraction: a sustainable technique for plant amelioration. Journal of Environmental Management 2018;220: 118-125. [DOI:10.1016/j.jenvman.2018.05.017]
20. Norton GJ, Adomako EE, Deacon CM et al. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environmental Pollution 2013;177: 38-47. [DOI:10.1016/j.envpol.2013.01.049]
21. Takahashi Y, Minamikawa R, Hattori KH, et al. Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science and Technology 2004;38: 1038-1044. [DOI:10.1021/es034383n]
22. Yamaguchi N, Nakamura T, Dong D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 2011;83: 925-932. [DOI:10.1016/j.chemosphere.2011.02.044]
23. Di X, Beesley L, Zhang Z, et al. Microbial arsenic methylation in soil and uptake and metabolism of methylated arsenic in plants: a review. International Journal of Environmental Research and Public Health 2019;16: 1-13. [DOI:10.3390/ijerph16245012]
24. Harine IJ, Islam MR, Hossain M, et al. Arsenic accumulation in rice grain as influenced by water management: human health risk assessment. Agronomy 2021;11(9): 1741. [DOI:10.3390/agronomy11091741]
25. Majumdar A, Upadhyay MK, Giri B, et al. Arsenic dynamics and flux assessment under drying-wetting irrigation and enhanced microbial diversity in paddy soils: A four year study in Bengal delta plain. Journal of Hazardous Materials 2021;409: 124443. [DOI:10.1016/j.jhazmat.2020.124443]
26. Szaloki T, Szekely, A, Valkovszki NJ, et al. Strategies for Reducing Arsenic Content in Rice: A review. Journal of Central European Green Innovation, 2023;11(1): 55-66. [DOI:10.33038/jcegi.4492]
27. Norton GJ, Travis AJ, Talukdar P, et al. Genetic loci regulating arsenic content in rice grains when grown flooded or under alternative wetting and drying irrigation. Rice 2019;12(1): 54. [DOI:10.1186/s12284-019-0307-9]
28. Somenahally AC, Hollister EB, Yan W, et al. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science and Technology 2011;45: 8328-8335. [DOI:10.1021/es2012403]
29. Zong Y, Xiao Q, Malik Z, et al. Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system. Chemosphere 2021;280: 130830. [DOI:10.1016/j.chemosphere.2021.130830]
30. Ahmad M, Ahmad M, Usman AR, et al. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Environmental Geochemistry and Health 2019;41: 1687-1704. [DOI:10.1007/s10653-017-9947-0]
31. Wu J, Li Z, Wang L, et al. A novel calcium-based magnetic biochar reduces the accumulation of as in grains of rice (Oryza sativa L.) in As-contaminated paddy soils. Journal of Hazardous Materials 2020;394: 122507. [DOI:10.1016/j.jhazmat.2020.122507]
32. Rajput VD, Kumari A, Minkina T, et al. An assessment of integrated role of biochars and nanoparticles in soil remediation processes. Environmental Geochemistry and Health 2022;45: 9435-9449. [DOI:10.1007/s10653-022-01375-w]
33. Pan D, Liu C, Yu H, et al. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica sol together. Environmental Science and Pollution Research 2019;26(24): 24979-24987. [DOI:10.1007/s11356-019-05381-x]
34. Leksungnoen P, Wisawapipat W, Ketrot D, et al. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain. Science of the Total Environment 2019;684: 360-370. [DOI:10.1016/j.scitotenv.2019.05.247]
35. Lian F, Liu X, Gao M, et al. Effects of Fe-Mn-Ce oxide-modified biochar on as accumulation, morphology, and quality of rice (Oryza sativa L.). Environmental Science and Pollution Research 2020;27(15): 18196-18207. [DOI:10.1007/s11356-020-08355-6]
36. Jin W, Wang Z, Sun Y, et al. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety 2020;189: 109928. [DOI:10.1016/j.ecoenv.2019.109928]
37. Jing F, Yang Z, Chen X, et al. Potentially hazardous element accumulation in rice tissues and their availability in soil systems after biochar amendments. Journal of Soils and Sediments 2019;19(7): 2957-2970. [DOI:10.1007/s11368-019-02296-5]
38. Qiao J, Yu H, Wang X, et al. The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil. Biochar 2019;1(2): 203-212. [DOI:10.1007/s42773-019-00015-4]
39. Moulick D, Samanta S, Sarkar S, et al. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Science of the Total Environment 2021;800: 149477. [DOI:10.1016/j.scitotenv.2021.149477]
40. Wu F, Fang Q, Yan S, et al. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germi- nation, early growth, and arsenic uptake. Environmental Science and Pollution Research 2020;27(21): 26974-26981. [DOI:10.1007/s11356-020-08965-0]
41. Wu L, Wei C, Zhang S, et al. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. Journal of Cleaner Production 2019;235: 901-909. [DOI:10.1016/j.jclepro.2019.07.043]
42. Chen Y, Han YH, Cao Y, et al. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Frontiers in Plant Science 2017;8: 268. [DOI:10.3389/fpls.2017.00268]
43. Zheng RL, Cai C, Liang JH, et al. The effects of biochars from rice residue on the formation of iron plaque and the acumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 2012;89(7): 856-862. [DOI:10.1016/j.chemosphere.2012.05.008]
44. Kumarathilaka P, Seneweera S, Ok YS, et al. Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach-a critical review. Critical Reviews in Environmental Science and Technology 2019;50(1): 31-71. [DOI:10.1080/10643389.2019.1618691]
45. Hou S, Zheng N, Tang L, et al. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of nonferrous metals smelting area. Environmental Monitoring and Assessment 2019;191: 634. [DOI:10.1007/s10661-019-7793-5]
46. Wan Y, Huang Q, Wang Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. Journal of Hazardous Materials 2020;384: 121293. [DOI:10.1016/j.jhazmat.2019.121293]
47. Sun N, Thompson RB, Xu J, et al. Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production. Agronomy 2021;11(11): 2272. [DOI:10.3390/agronomy11112272]
48. Sinha B, Bhattacharyya K. Arsenic accumulation and specia- tion in transplanted autumn rice as influenced by source of irrigation and organic manures. International Journal of Bio-resource and Stress Management 2014;5(3): 363-368. [DOI:10.5958/0976-4038.2014.00581.8]
49. Islam S, Rahman MM, Naidu R. Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions. Chemosphere 2019;214: 606-613. [DOI:10.1016/j.chemosphere.2018.09.158]
50. Sengupta S, Bhattacharyya K, Mandal J, et al. Deficit irrigation and organic amendments can reduce dietary arsenic risk from rice: introducing machine learning- based prediction models from field data. Agriculture, Ecosystems and Environment 2021;39: 107516. [DOI:10.1016/j.agee.2021.107516]
51. Gul S, Naz A, Fareed I, et al. Reducing heavy metals extraction from contaminated soils using organic and inorganic amendments-A review. Polish Journal of Environmental Studies 2015;24: 1423-1426. [DOI:10.15244/pjoes/26970]
52. Xu XY, McGrath SP, Meharg AA, et al. Growing rice aerobically decreases arsenic accumulation. Environmental Science and Technology 2008;42: 5574-5579. [DOI:10.1021/es800324u]
53. Rinklebe J, Shaheen SM, Yu K. Release of As, Ba, Cd, Cu, Pb, and Sr under predefinite redox conditions in different rice paddy soils originating from the USA and Asia. Geoderma 2016;270: 21-32. [DOI:10.1016/j.geoderma.2015.10.011]
54. Bakhat HF, Zia Z, Fahad S, et al. Arsenic uptake, accumulation, and toxicity in rice plants: possible remedies for its detoxification: a review. Environmental Science and Pollution Research 2017;24(10): 9142-9158. [DOI:10.1007/s11356-017-8462-2]
55. Matsumoto S, Kasuga J, Makino T, et al. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environmental and Experimental Botany 2016;125: 42-51. [DOI:10.1016/j.envexpbot.2016.02.002]
56. Liu C, Yu HY, Liu C, et al. Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink. Environmental Pollution 2015;199: 95-101. [DOI:10.1016/j.envpol.2015.01.025]
57. Farrow EM, Wang J, Burken JG, et al. Reducing arsenic accumulation in rice grain through iron oxide amendment. Ecotoxicology and Environmental Safety 2015;118: 55-61. [DOI:10.1016/j.ecoenv.2015.04.014]
58. Qiao JT, Liu TX, Wang XQ, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 2018;195: 260-271. [DOI:10.1016/j.chemosphere.2017.12.081]
59. Sanglard LM, Detmann KC, Martins SC, et al. The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environmental and Experimental Botany 2016;123: 22-36. [DOI:10.1016/j.envexpbot.2015.11.004]
60. Meharg C, Meharg AA. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality in rice Environmental and Experimental Botany 2015;120: 8-17. [DOI:10.1016/j.envexpbot.2015.07.001]
61. Limmer MA, Wise P, Dykes GE, et al. Silicon decreases dimethylarsinic acid concentration in rice grain and mitigates straighthead disorder. Environmental Science and Technology 2018;52(8): 4809-4816. [DOI:10.1021/acs.est.8b00300]
62. Sun SK, Chen Y, Che J, et al. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytologist 2018;219(2): 641-653. [DOI:10.1111/nph.15190]
63. Hussain MM, Bibi I, Niazi NK, et al. Arsenic biogeochemical cycling in paddy soil-rice system: interaction with various factors, amendments and mineral nutrients. Science of The Total Environment 2021;773: 145040. [DOI:10.1016/j.scitotenv.2021.145040]
64. Wang HY, Wen SL, Chen P, et al. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environmental Science and Pollution Research 2016;23(4): 3781-3788. [DOI:10.1007/s11356-015-5638-5]
65. Li RY, Stroud JL, Ma JF, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science and Technology 2009;43: 3778-3783. [DOI:10.1021/es803643v]
66. Dixit G, Singh AP, Kumar A, et al. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. Journal of Hazardous Materials 2015;298: 241-251. [DOI:10.1016/j.jhazmat.2015.06.008]
67. Azam SMGG, Sarker TC, Sabrina N. Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: A review. Toxicology Mechanisms and Methods 2016;26: 565-579. [DOI:10.1080/15376516.2016.1230165]
68. Srivastava S, Akkarakaran JJ, Sounderajan S, et al. Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: impact on the expression of trans- porters and thiol metabolism. Geoderma 2016;270: 33-42. [DOI:10.1016/j.geoderma.2015.11.006]
69. Finnegan PM, Chen W. Arsenic toxicity: The effects on plant metabolism. Frontiers in Physiology 2012;3: 1-18. [DOI:10.3389/fphys.2012.00182]
70. Meselhy AG, Sharma S, Guo Z, et al. Nanoscale sulfur improves plant growth and reduces arsenic toxicity and accumulation in rice (Oryza sativa L.). Environmental Science and Technology 2021;55: 13490-13503. [DOI:10.1021/acs.est.1c05495]
71. Hu ZY, Zhu YG, Li M, et al. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution 2007;147: 387-393. [DOI:10.1016/j.envpol.2006.06.014]
72. Dixit G, Singh AP, Kumar A, et al. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiology and Biochemistry 2016;99: 86-96. [DOI:10.1016/j.plaphy.2015.11.005]
73. Ma X, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of The Total Environment 2010;408(16): 3053-3061. [DOI:10.1016/j.scitotenv.2010.03.031]
74. Reible D, Lampert D, Constant D, et al. Active capping demonstration in the Anacostia River, Washington, DC. The Journal of Environmental Cleanup Costs, Technologies and Techniques 2006;17(1): 39-53. [DOI:10.1002/rem.20111]
75. Ma X, Sharifan H, Dou F, et al. Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chemical Engineering Journal 2020;384: 1385-8947. [DOI:10.1016/j.cej.2019.123802]
76. Wang X, Sun W, Ma X. Differential impacts of copper oxide nanoparticles and Copper (II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa L.). Environmental Pollution 2019;252: 967-273. [DOI:10.1016/j.envpol.2019.06.052]
77. Wu Q, Shi J, Jiang X, et al. Regulatory Mechanism of Copper Oxide Nanoparticles on Uptake of Different Species of Arsenic in Rice. Nanomaterials, 2021;11: 2228. [DOI:10.3390/nano11092228]
78. Liu C, Wei L, Zhang S, et al. Effects of nanoscale silica sol foliar application on arsenic uptake, distribution and oxidative damage defense in rice (Oryza sativa L.) under arsenic stress. RSC Advances 2014;4(100): 57227-57234. [DOI:10.1039/C4RA08496A]
79. Wang X, Jiang J, Dou F, et al. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes. Paddy and Water Environment 2021;19: 569-584. [DOI:10.1007/s10333-021-00855-6]
80. Wang X, Sun W, Zhang S, et al. Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a hydroponic system. Environmental Science and Technology 2018;52(17): 10040-10047. [DOI:10.1021/acs.est.8b01664]
81. Liu J, Simms M, Song S, et al. Physiological effects of copper oxide nanoparticles and arsenic on the growth and life cycle of rice (Oryza sativa japonica 'Koshihikari'). Environmental Science and Technology 2018;52(23): 13728-13737. [DOI:10.1021/acs.est.8b03731]
82. Zhou S, Peng L, Lei M, et al. Control of As soil to rice transfer (Oryza sativa L.) with nano-manganese dioxide. Acta Scientiae Circumstantiae 2015;35: 855-861.
83. Cui J, Li Y, Jin Q, et al. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano 2020;7(1): 162-171. [DOI:10.1039/C9EN01035A]
84. Li B, Zhou S, Wei D, et al. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic-contaminated paddy soil of southern China using nanostructured α-MnO2: pot experiment and field application. Science of The Total Environment 2019;650: 546-556. [DOI:10.1016/j.scitotenv.2018.08.436]
85. Wu X, Hu J, Wu F, et al. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): a mechanistic study. Journal of Hazardous Materials 2021;405: 124047. [DOI:10.1016/j.jhazmat.2020.124047]
86. Islam F, Yasmeen T, Riaz M, et al. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicology and Environmental Safety 2014;110: 143-152. [DOI:10.1016/j.ecoenv.2014.08.020]
87. Shaker Kouhi S, Rabiee M. Strategies of Reducing Cadmium Uptake and Accumulation in Rice Grain: A Review. Journal of Biosafety 2023;16(3): 75-98 [in Persian].
88. Kruger MC, Bertin PN, Heipieper HJ, et al. Bacterial metabolism of environmental arsenic - mechanisms and biotechnological applications. Applied Microbiology and Biotechnology 2013;97(9): 3827-3841. [DOI:10.1007/s00253-013-4838-5]
89. Yang YP, Zhang HM, Yuan HY, et al. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution 2018;236: 598-608. [DOI:10.1016/j.envpol.2018.01.099]
90. Williams GP, Gnanadesigan M, Ravikumar S. Biosorption and biokinetic properties of Solar Saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiology Journal 2013;30: 497-500. [DOI:10.1080/01490451.2012.732663]
91. Kumarathilaka P, Seneweera S, Meharg A, et al. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors-a review. Water Research 2018;140: 403-414. [DOI:10.1016/j.watres.2018.04.034]
92. Li H, Chen XW, Wong MH. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 2016;145: 224-230. [DOI:10.1016/j.chemosphere.2015.10.067]
93. Pathare V, Srivastava S, Sonawane BV, et al. Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiology and Molecular Biology of Plants 2016;22(4): 515-522. [DOI:10.1007/s12298-016-0382-y]
94. Moens M, Branco R, Morais PV. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. World Journal of Microbiology and Biotechnology 2020;36(2): 23. [DOI:10.1007/s11274-020-2800-0]
95. Norton GJ, Islam MR, Deacon CM, et al. Identifi cation of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environmental Science and Technology 2009;43: 6070-6075. [DOI:10.1021/es901121j]
96. Pillai TR, Yan WG, Agrama HA, et al. Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions. Crop Science 2010;50: 2065-2075. [DOI:10.2135/cropsci2009.10.0568]
97. Norton G, Duan GL, Lei M, et al. Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Annals of Applied Biology 2012;161(1): 46-56. [DOI:10.1111/j.1744-7348.2012.00549.x]
98. Samal AC, Bhattacharya P, Biswas P, et al. Variety-specific arsenic accumulation in 44 different rice cultivars (O. sativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water. Journal of Hazardous Materials 2021;407: 124804. [DOI:10.1016/j.jhazmat.2020.124804]
99. Zhang J, Zhu YG, Zeng DL, et al. Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytologist 2008;177: 350-356. [DOI:10.1111/j.1469-8137.2007.02267.x]
100. Syed MA, Iftekharuddaula K, Mian MK, et al. Main effect QTLs associated with arsenic phyto-toxicity tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 2016;209(3): 805-814. [DOI:10.1007/s10681-016-1683-5]
101. Suriyagoda LDB, Dittert K, Lambers H. Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: a review. Pedosphere 2018;28(3): 363-382. [DOI:10.1016/S1002-0160(18)60026-8]
102. Moulick D, Santra SC, Ghosh D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicology and Environmental Safety 2018;152: 67-77. [DOI:10.1016/j.ecoenv.2018.01.037]
103. Zhao FJ, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil 2020;446(1): 1-21. [DOI:10.1007/s11104-019-04374-6]
104. Gorny J, Billon G, Lesven L, et al. Arsenic behavior in river sediments under redox gradient: a review. Science of the Total Environment 2015;505: 423-434. [DOI:10.1016/j.scitotenv.2014.10.011]
105. Rahaman S, Sinha AC, Mukhopadhyay D. Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). Journal of Environmental Sciences 2011;23: 633-639. [DOI:10.1016/S1001-0742(10)60457-3]
106. Fu Y, Chen M, Bi X, et al. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environmental Pollution 2011;159: 1757-1762. [DOI:10.1016/j.envpol.2011.04.018]
107. Shrivastava A, Barla A, Majumdar A, et al. Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. Chemosphere 2020;238: 124988. [DOI:10.1016/j.chemosphere.2019.124988]
108. Kumarathilaka P, Seneweera S, Ok YS, et al. Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach-a critical review. Crit. Rev. Environmental Science and Technology 2020;50(1): 31-71. [DOI:10.1080/10643389.2019.1618691]
109. Devi OR, Laishram B, Debnath A, et al. Mitigation of arsenic toxicity in rice grain through soil-water-plant continuum. Plant, Soil and Environment 2024;70(7): 395-406. [DOI:10.17221/470/2023-PSE]
110. Mei XQ, Ye ZH, Wong MH. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution 2009;157: 2550-2557. [DOI:10.1016/j.envpol.2009.02.037]
111. Wu C, Ye ZH, Shu WS, et al. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. Journal of Experimental Botany 2011;62(8): 2889-2898. [DOI:10.1093/jxb/erq462]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Journal of Environmental Health Engineering

Designed & Developed by : Yektaweb