1. Reza Samarghandi M, Tari K, Shabanloo A, et al. Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater. Separation and Purification Technology 2020;247: 116931. [
DOI:10.1016/j.seppur.2020.116931]
2. Shirzad-Siboni M, Jafari SJ, Giahi O, et al. Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud. Journal of Industrial and Engineering Chemistry 2014;20(4): 1432-7. [
DOI:10.1016/j.jiec.2013.07.028]
3. Shafawi AN, Mahmud RA, Ahmed Ali K, et al. Bi2O3 particles decorated on porous g-C3N4 sheets: Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of Reactive Black 5 under UV-vis light. Journal of Photochemistry and Photobiology A: Chemistry 2020;389: 112289. [
DOI:10.1016/j.jphotochem.2019.112289]
4. Saravanan M, Sambhamurthy NP, Sivarajan M. Treatment of Acid Blue 113 Dye Solution Using Iron Electrocoagulation. CLEAN - Soil, Air, Water 2010;38(5-6): 565-71. [
DOI:10.1002/clen.200900278]
5. Márquez AA, Coreño O, Nava JL. An innovative process combining electrocoagulation and photoelectro-Fenton-like methods during the abatement of Acid Blue 113 dye. Process Safety and Environmental Protection 2022;163: 475-86. [
DOI:10.1016/j.psep.2022.05.061]
6. Lee LY, Gan S, Yin Tan MS, et al. Effective removal of Acid Blue 113 dye using overripe Cucumis sativus peel as an eco-friendly biosorbent from agricultural residue. Journal of Cleaner Production 2016;113: 194-203. [
DOI:10.1016/j.jclepro.2015.11.016]
7. Ma Z, Cao H, Lv F, et al. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5. Frontiers of Environmental Science & Engineering 2021;15(5): 98. [
DOI:10.1007/s11783-020-1372-4]
8. Satapanajaru T, Yoo-iam M, Bongprom P, Pengthamkeerati P. Decolorization of Reactive Black 5 by persulfate oxidation activated by ferrous ion and its optimization. Desalination and Water Treatment 2015;56(1): 121-35. [
DOI:10.1080/19443994.2014.932710]
9. Luo S, Duan L, Sun B, et al. Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Applied Catalysis B: Environmental 2015;164: 92-9. [
DOI:10.1016/j.apcatb.2014.09.008]
10. Tan C, Jian X, Dong Y, et al. Activation of peroxymonosulfate by a novel EGCE@Fe3O4 nanocomposite: Free radical reactions and implication for the degradation of sulfadiazine. Chemical Engineering Journal 2019;359: 594-603. [
DOI:10.1016/j.cej.2018.11.178]
11. Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal 2017;310: 41-62. [
DOI:10.1016/j.cej.2016.10.064]
12. Scaria J, Gopinath A, Nidheesh PV. A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. Journal of Cleaner Production 2021;278: 124014. [
DOI:10.1016/j.jclepro.2020.124014]
13. Liu M, Ye Y, Ye J, et al. Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry 2023;9: 110. [
DOI:10.3390/magnetochemistry9040110]
14. Li Z, Sun Y, Yang Y, et al. Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. Environmental Research 2020;183: 109156. [
DOI:10.1016/j.envres.2020.109156]
15. Huang G, Liu K, Muhammad Y, et al. Integrating magnetized bentonite and pinecone-like BiOBr/BiOI Step-scheme heterojunctions as novel recyclable photocatalyst for efficient antibiotic degradation. Journal of Industrial and Engineering Chemistry 2023;122: 482-99. [
DOI:10.1016/j.jiec.2023.03.010]
16. Pandey S. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids 2017;241: 1091-113. [
DOI:10.1016/j.molliq.2017.06.115]
17. Lou Z, Zhou Z, Zhang W, et al. Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: Synthesis, characterization, mechanism, kinetics and regeneration. Journal of the Taiwan Institute of Chemical Engineers 2015;49: 199-205. [
DOI:10.1016/j.jtice.2014.11.007]
18. Desalegn YM, Andoshe DM, Desissa TD. Composite of bentonite/CoFe2O4/hydroxyapatite for adsorption of Pb (II). Materials Research Express 2020;7(11): 115501. [
DOI:10.1088/2053-1591/abc71f]
19. Culita DC, Simonescu CM, Patescu RE, et al. Polyamine Functionalized Magnetite Nanoparticles as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions. Journal of Inorganic and Organometallic Polymers and Materials 2017;27(2): 490-502. [
DOI:10.1007/s10904-016-0491-7]
20. Zaher M, Wahab S, Taha M, Masoud A. Sorption Characteristics of Iron, Fluoride and Phosphate from Wastewater of Phosphate Fertilizer Plant using Natural Sodium Bentonite. Journal of Membrane Science & Technology 2018;08. [
DOI:10.4172/2155-9589.1000186]
21. Babahoum N, Ould Hamou M. Characterization and purification of Algerian natural bentonite for pharmaceutical and cosmetic applications. BMC Chemistry 2021;15(1): 50. [
DOI:10.1186/s13065-021-00776-9]
22. Li Z, Luo S, Yang Y, Chen J. Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate activation by bentonite supported Fe/Ni bimetallic nanoparticle. Chemosphere 2019;216: 499-506. [
DOI:10.1016/j.chemosphere.2018.10.133]
23. Tong S, Chen D, Jiang X, et al. Persulfate activation by Fe3O4-doped biochar synthesized from Fenton sludge and sewage sludge for enhanced 1-H-1,2,4-triazole degradation. Chemical Engineering Journal 2023;461: 142075. [
DOI:10.1016/j.cej.2023.142075]
24. Gao Y, Zhao Q, Li Y, et al. Degradation of sulfamethoxazole by peroxymonosulfate activated by waste eggshell supported Ag2O-Ag nano-particles. Chemical Engineering Journal 2021;405: 126719. [
DOI:10.1016/j.cej.2020.126719]
25. Ghanbari F, Jaafarzadeh N. Graphite-supported CuO catalyst for heterogeneous peroxymonosulfate activation to oxidize Direct Orange 26: the effect of influential parameters. Research on Chemical Intermediates 2017;43(8): 4623-37. [
DOI:10.1007/s11164-017-2901-z]
26. Wang H, Wang C, Wang X, et al. Cobalt atom sites anchored on sulfhydryl decorated UiO-66 to activate peroxymonosulfate for norfloxacin degradation. Journal of Environmental Chemical Engineering 2023;11(1): 108972. [
DOI:10.1016/j.jece.2022.108972]
27. Zhao Z, Zhu S, Qi S, et al. Collaborative modification strategy to improve the formation of biochar-derived persistent free radicals for aniline removal via peroxymonosulfate activation. Biochar 2025;7. [
DOI:10.1007/s42773-024-00416-0]
28. Chen H, Ku J, Wang L. Thermal catalysis under dark ambient conditions in environmental remediation: Fundamental principles, development, and challenges. Chinese Journal of Catalysis 2019;40(8): 1117-34. [
DOI:10.1016/S1872-2067(19)63366-8]