[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Accepted articles :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Open Access Policy::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 7, Issue 3 (5-2020) ::
jehe 2020, 7(3): 261-279 Back to browse issues page
Evaluation of Malathion Pesticide Removal Efficiency by g-C3N4/ Fe3O4/Ag Nanocomposites from Aqueous Solutions in the Presence of UV Irradiation
Ali Esrafili , Soudabeh Ghodsi * , Roshanak Rezaei Kalantary , Mitra Gholami
M.Sc student of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (1717 Views)
Background: Organophosphates are one of the most common pesticides in the world. One of the most commonly used toxins in this group is malathion, which is classified by the EPA as Group III carcinogenic substances. Therefore, due to the high consumption of this pesticide and its pathogenicity, it should be eliminated in an appropriate manner. One of the elimination ways is the use of advanced oxidation processes. The aim of this study was to determine the photocatalytic removal of malathion pesticide by g-C3N4/Fe3O4/Ag nanocomposite.
Method: In this study, g-C3N4/Fe3O4/Ag nanocomposites synthesized by hydrothermal method were used for photocatalytic removal of malathion. The variables studied were pH, nanocomposite dose, and contaminant concentration. Furthermore, the radical effects of ammonium oxalate, tert-butanol, and benzoquinone were analyzed on the experiment procedure.
Results: The best removal efficiency of malathion at pH = 7, the dose of 0.5 g/l, and contaminant concentration 10 mg/l at 60 min was 100%. By increasing the catalyst dose up to 0.5 g/L, the efficiency increased. However, with increasing contaminant concentration, the removal efficiency decreased. Additionally, the removal efficiency of malathion in the presence of ammonium oxalate, tert-butanol, and benzoquinone radicals was 93.36%, 44.78%, and 90.71%, respectively, and the reaction kinetics followed the first equation with R2 = 0.9852. 
Conclusion: Therefore, g-C3N4/Fe3O4/Ag has a high potential for malathion removal moreover can be used to remove various pollutants from aqueous solutions. 
Keywords: Photocatalyst, Malation, C3N4/Fe3O4/Ag
Full-Text [PDF 1249 kb]   (927 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/06/28 | Accepted: 2020/06/28 | Published: 2020/06/28
Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esrafili A, Ghodsi S, Rezaei Kalantary R, Gholami M. Evaluation of Malathion Pesticide Removal Efficiency by g-C3N4/ Fe3O4/Ag Nanocomposites from Aqueous Solutions in the Presence of UV Irradiation. jehe 2020; 7 (3) :261-279
URL: http://jehe.abzums.ac.ir/article-1-757-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 3 (5-2020) Back to browse issues page
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4652