1. 1. Patel BP, Kumar A. Biodegradation of 4-chlorophenol in an airlift inner loop bioreactor with mixed consortium: effect of HRT, loading rate and biogenic substrate. 3 Biotech 2016;6(2): 117. [
DOI:10.1007/s13205-016-0435-5] [
PMID] [
]
2. Bjerketorp J, Röling WFM, Feng X-M, et al. Formulation and stabilization of an Arthrobacter strain with good storage stability and 4-chlorophenol-degradation activity for bioremediation. Applied Microbiology and Biotechnology 2018;102(4): 2031-40. [
DOI:10.1007/s00253-017-8706-6] [
PMID] [
]
3. Allaboun H, Abu Al-Rub FA. Removal of 4-Chlorophenol from Contaminated Water Using Activated Carbon from Dried Date Pits: Equilibrium, Kinetics, and Thermodynamics Analyses. Materials (Basel) 2016;9(4). [
DOI:10.3390/ma9040251] [
PMID] [
]
4. Seid Mohammadi A, Movahedian Attar H. p-Chlorophenol oxidation in industrial effluent by ultrasonic/fenton technology. Journal of Water and Wastewater; Ab va Fazilab (in persian) 2012;22(4): 43-9.
5. Azizi E, Abbasi F, Baghapour MA, et al. 4-chlorophenol removal by air lift packed bed bioreactor and its modeling by kinetics and numerical model (artificial neural network). Scientific Reports 2021;11(1): 670. [
DOI:10.1038/s41598-020-79968-7] [
PMID] [
]
6. Euro C. Risk assessment for the marine environment OSPARCOM region, monochlorophenols. Feb 2010.
7. Song H-Y, Liu J-Z, Xiong Y-H, et al. Treatment of aqueous chlorophenol by phthalic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic 2003;22(1-2): 37-44. [
DOI:10.1016/S1381-1177(03)00006-7]
8. Radhika M, Palanivelu K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-Kinetics and isotherm analysis. Journal of hazardous materials 2006;138(1): 116-24. [
DOI:10.1016/j.jhazmat.2006.05.045] [
PMID]
9. Czaplicka M. Sources and transformations of chlorophenols in the natural environment. Science of the Total environment 2004;322(1-3): 21-39. [
DOI:10.1016/j.scitotenv.2003.09.015] [
PMID]
10. Rodríguez M. Fenton and UV-vis based advanced oxidation processes in wastewater treatment: Degradation, mineralization and biodegradability enhancement: Universitat de Barcelona; 2003.
11. He D, Li Y, Lyu C, et al. New insights into MnOOH/peroxymonosulfate system for catalytic oxidation of 2, 4-dichlorophenol: Morphology dependence and mechanisms. Chemosphere 2020;255: 126961. [
DOI:10.1016/j.chemosphere.2020.126961] [
PMID]
12. Xu X, Zhang Y, Zhou S, et al. Activation of persulfate by MnOOH: Degradation of organic compounds by nonradical mechanism. Chemosphere 2021;272: 129629. [
DOI:10.1016/j.chemosphere.2021.129629] [
PMID]
13. Lim J, Lee JM, Kim C, et al. Two-dimensional RuO 2 nanosheets as robust catalysts for peroxymonosulfate activation. Environmental Science: Nano 2019;6(7): 2084-93. [
DOI:10.1039/C9EN00500E]
14. Ghauch A, Tuqan AM. Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products. Chemical Engineering Journal 2012;183: 162-71. [
DOI:10.1016/j.cej.2011.12.048]
15. Huang J, Dai Y, Singewald K, et al. Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chemical Engineering Journal 2019;370: 906-15. [
DOI:10.1016/j.cej.2019.03.238]
16. Saputra E, Muhammad S, Sun H, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environmental science & technology 2013;47(11): 5882-7. [
DOI:10.1021/es400878c] [
PMID]
17. Elizarova GL, Zhidomirov GM, Parmon VN. Hydroxides of transition metals as artificial catalysts for oxidation of water to dioxygen. Catalysis Today 2000;58(2): 71-88. [
DOI:10.1016/S0920-5861(00)00243-1]
18. Huang Y, Li X, Zhang C, et al. Degrading arsanilic acid and adsorbing the released inorganic arsenic simultaneously in aqueous media with CuFe2O4 activating peroxymonosulfate system: Factors, performance, and mechanism. Chemical Engineering Journal 2021;424. [
DOI:10.1016/j.cej.2021.128537]
19. Hadi S, Taheri E, Amin MM, et al. Synergistic degradation of 4-chlorophenol by persulfate and oxalic acid mixture with heterogeneous Fenton like system for wastewater treatment: Adaptive neuro-fuzzy inference systems modeling. Journal of Environmental Management 2020;268: 110678. [
DOI:10.1016/j.jenvman.2020.110678] [
PMID]
20. Li N, Li R, Yu Y, et al. Efficient degradation of bentazone via peroxymonosulfate activation by 1D/2D γ-MnOOH-rGO under simulated sunlight: Performance and mechanism insight. Science of the Total Environment 2020;741. [
DOI:10.1016/j.scitotenv.2020.140492] [
PMID]
21. Zeng Z, Khan A, Wang Z, et al. Elimination of atrazine through radical/non-radical combined processes by manganese nano-catalysts/PMS and implications to the structure-performance relationship. Chemical Engineering Journal 2020;397: 125425. [
DOI:10.1016/j.cej.2020.125425]
22. Bauer R, Waldner G, Fallmann H, et al. The photo-fenton reaction and the TiO2/UV process for waste water treatment− novel developments. Catalysis today 1999;53(1): 131-44. [
DOI:10.1016/S0920-5861(99)00108-X]
23. Organization WH, UNICEF. Global water supply and sanitation assessment 2000 report. World Health Organization (WHO), 2000.
24. Gholizadeh A, Kermani M, Gholami M, FarzadkiaM M. Comparative Investigation of 2-Chlorophenol and 4-Chrorophenol Removal Using Granulated Activated Carbon and Rice Husk Ash. Tolooebehdasht 2013;11(3): 66-78.
25. Seidmohammadi A, Asgari G, Faradmal J, et al. Photocatalytic Degradation of 4-Chlorophenol Using Zero Valent Iron Activated Persulfate and Zero Valent Iron Activated Hydrogen Peroxide Processes under UV Irradiation: A Taguchi Experimental Design. Journal of Water and Wastewater 2019;30(2).
26. Yang Y, Zhang P, Hu K, et al. Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants. Applied Catalysis B: Environmental 2021;286: 119903. [
DOI:10.1016/j.apcatb.2021.119903]
27. Li C, Huang Y, Dong X, et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine. Applied Catalysis B: Environmental 2019;247. [
DOI:10.1016/j.apcatb.2019.01.079]
28. Xiao G, Xu T, Faheem M, et al. Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review. International Journal of Environmental Research and Public Health 2021;18(7): 3344. [
DOI:10.3390/ijerph18073344] [
PMID] [
]
29. Li S, Tang Y, Wang M, et al. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: Characterization, performance and mechanism. Journal of Alloys and Compounds 2021;880. [
DOI:10.1016/j.jallcom.2021.160547]
30. Zhang H, Wang X, Li Y, et al. A novel MnOOH coated nylon membrane for efficient removal of 2,4-dichlorophenol through peroxymonosulfate activation. Journal of Hazardous Materials 2021;414. [
DOI:10.1016/j.jhazmat.2021.125526] [
PMID]
31. Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrasonics Sonochemistry 2016;29: 156-62. [
DOI:10.1016/j.ultsonch.2015.09.008] [
PMID]
32. Othman I, Hisham Zain J, Abu Haija M, Banat F. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway. Applied Catalysis B: Environmental 2020;266. [
DOI:10.1016/j.apcatb.2020.118601]
33. Ding M, Ao W, Xu H, et al. Facile construction of dual heterojunction CoO@TiO2/MXene hybrid with efficient and stable catalytic activity for phenol degradation with peroxymonosulfate under visible light irradiation. Journal of Hazardous Materials 2021;420. [
DOI:10.1016/j.jhazmat.2021.126686] [
PMID]
34. Zhang T, Li C, Ma J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship. Applied Catalysis B: Environmental 2008;82(1-2): 131-7. [
DOI:10.1016/j.apcatb.2008.01.008]
35. Guan Y-H, Ma J, Ren Y-M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Research 2013;47(14): 5431-8. [
DOI:10.1016/j.watres.2013.06.023] [
PMID]
36. Zhou Y, Jiang J, Gao Y, et al. Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling. Water Research 2018;138: 56-66. [
DOI:10.1016/j.watres.2018.03.045] [
PMID]
37. Fan J, Qin H, Jiang S. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. Chemical Engineering Journal 2019;359: 723-32. [
DOI:10.1016/j.cej.2018.11.165]