1. Savci, S. An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 2012;3(1): 73. [
DOI:10.7763/IJESD.2012.V3.191]
2. Vardhan, KH. Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 2019;290: 111197. [
DOI:10.1016/j.molliq.2019.111197]
3. Schwarzenbach, RP. Egli T, Hofstetter TB, et al. Global water pollution and human health. Annu Rev Environ Resour 2010;35: 109-36. [
DOI:10.1146/annurev-environ-100809-125342]
4. Moss, B. Water pollution by agriculture. Trans R Soc B: Biol Sci 2008;363(1491): 659-66. [
DOI:10.1098/rstb.2007.2176]
5. Saxena, A. Bhardwaj M, Allen T, et al. Adsorption of heavy metals from wastewater using agricultural-industrial wastes as biosorbents. Water Sci 2017;31(2): 189-97. [
DOI:10.1016/j.wsj.2017.09.002]
6. Fu, Z. Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods 2020;30(3): 167-76. [
DOI:10.1080/15376516.2019.1701594]
7. De Vries, W. Römkens PF, Schütze G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev Environ Contam Toxicol 2007: 91-130. [
DOI:10.1007/978-0-387-69163-3_4]
8. Joseph, L. Jun B-M, Flora JR, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019;229: 142-59. [
DOI:10.1016/j.chemosphere.2019.04.198]
9. Pan, Z. An L. Removal of heavy metal from wastewater using ion exchange membranes. Applications of ion exchange materials in the environment 2019: 25-46. [
DOI:10.1007/978-3-030-10430-6_2]
10. Zandipak, R. Sobhanardakani S, Shirzadi A. Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB-SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Separ Sci Technol 2020;55(3): 456-70. [
DOI:10.1080/01496395.2019.1566262]
11. Liu, L. Guo X, Tallon R, et al. Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization. Chem Comm 2017;53(5): 881-4. [
DOI:10.1039/C6CC08515F]
12. Carolin, CF. Kumar PS, Saravanan A, et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J Env Chem Eng 2017;5(3): 2782-99. [
DOI:10.1016/j.jece.2017.05.029]
13. Zhu, Y. Fan W, Zhou T, Li X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci Total Environ 2019;678: 253-66. [
DOI:10.1016/j.scitotenv.2019.04.416]
14. Abbas, M. Mass Transfer Processes in the Adsorption of Lead (Pb 2+) by Apricot Stone Activated Carbon (ASAC): Isotherms Modeling and Thermodynamic Study. Prot Met Phys Chem Surf 2021;57: 687-98. [
DOI:10.1134/S207020512104002X]
15. M Abdul-Raheim, A-R. Shimaa M E-S, Reem K F, Manar E A-R. Low cost biosorbents based on modified starch iron oxide nanocomposites for selective removal of some heavy metals from aqueous solutions. Adv Mater Lett 2016;7(5): 402-9. [
DOI:10.5185/amlett.2016.6061]
16. Talebzadeh, F. Zandipak R, Sobhanardakani S. CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb(II), Ni(II) and V(V) ions from petrochemical wastewater. Desalin Water Treat 57(58): 28363-77. [
DOI:10.1080/19443994.2016.1188733]
17. Sobhanardakani, S. Parvizimosaed H, Olyaie E. Heavy metals removal from wastewaters using organic solid waste-rice husk. Environ Sci Pollut Res 2013; 20(8): 5265-71. [
DOI:10.1007/s11356-013-1516-1]
18. Cheraghi, M. Sobhanardakani S, Zandipak R, et al. Removal of Pb(II) from aqueous solutions using waste tea leaves. Iran J Toxicol 2015;9(28): 1247-53.
19. Richards, S. Dawson J, Stutter M. The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants. J Environ Manage 2019;231: 275-81. [
DOI:10.1016/j.jenvman.2018.10.019]
20. Shafiq, M. Alazba A, Amin M. Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. Sains Malays 2018;47(1): 35-49. [
DOI:10.17576/jsm-2018-4701-05]
21. Tabassum, RA. Shahid M, Niazi NK, et al. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. Int J Phytoremediation 2019;21(6): 509-18. [
DOI:10.1080/15226514.2018.1501340]
22. Rudi, NN. Muhamad MS, Te Chuan L, et al. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon 2020;6(9): e05049. [
DOI:10.1016/j.heliyon.2020.e05049]
23. Syeda, HI. Sultan I, Razavi KS, Yap P-S. Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. JWPE 2022;46: 102446. [
DOI:10.1016/j.jwpe.2021.102446]
24. Sulyman, M. Namiesnik J, Gierak A. Low-cost Adsorbents Derived from Agricultural By-products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review. Pol J Environ Stud 2017;26(3). [
DOI:10.15244/pjoes/66769]
25. Rani, GU. Konreddy AK, Mishra S. Novel hybrid biosorbents of agar: Swelling behaviour, heavy metal ions and dye removal efficacies. Int J Biol Macromol 2018;117: 902-10. [
DOI:10.1016/j.ijbiomac.2018.05.163]
26. Milojković, JV. Mihajlović ML, Stojanović MD, et al. Pb (II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study. J Chem Technol Biotechnol 2014;89(5): 662-70. [
DOI:10.1002/jctb.4184]
27. Pujol, D. Liu C, Gominho J, et al. The chemical composition of exhausted coffee waste. IInd Crops Prod 2013;50: 423-9. [
DOI:10.1016/j.indcrop.2013.07.056]
28. Lyman, DJ. Benck R, Dell S, et al. FTIR-ATR analysis of brewed coffee: effect of roasting conditions. J Agric Food Chem 2003;51(11): 3268-72. [
DOI:10.1021/jf0209793]
29. Blázquez, G. Martín-Lara M, Dionisio-Ruiz E, et al. Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J Ind Eng Chem 2011;17(5-6): 824-33. [
DOI:10.1016/j.jiec.2011.08.003]
30. Chen, H. Dai G, Zhao J, et al. Removal of copper (II) ions by a biosorbent-Cinnamomum camphora leaves powder. J Hazard Mater 2010;177(1-3): 228-36. [
DOI:10.1016/j.jhazmat.2009.12.022]
31. Tong, K. Kassim MJ, Azraa A. Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: Equilibrium, kinetics, and thermodynamic studies. J Chem Eng 2011;170(1): 145-53. [
DOI:10.1016/j.cej.2011.03.044]
32. Bricker, O. Some stability relations in the system Mn-O2-H2O at 25 and one atmosphere total pressure. Am Mineral 1965;50(9): 1296-354.
33. Ozsoy, HD. Kumbur H. Adsorption of Cu (II) ions on cotton boll. J Hazard Mater 2006;136(3): 911-6. [
DOI:10.1016/j.jhazmat.2006.01.035]
34. OuYang, X-k. Jin R-N, Yang L-P, et al. Partially hydrolyzed bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb (II) from aqueous mixtures. J Agric Food Chem 2014;62(25): 6007-15. [
DOI:10.1021/jf5015846]
35. Khoramzadeh, E. Nasernejad B, Halladj R. Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 2013;44(2): 266-9. [
DOI:10.1016/j.jtice.2012.09.004]
36. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40(9): 1361-403. [
DOI:10.1021/ja02242a004]
37. Freundlich, H. Over the adsorption in solution. J Phys Chem 1906;57(385471): 1100-7.
38. Iqbal, M. Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 2009;164(1): 161-71. [
DOI:10.1016/j.jhazmat.2008.07.141]
39. Taşar, Ş. Kaya F, Özer A. Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2014;2(2): 1018-26. [
DOI:10.1016/j.jece.2014.03.015]
40. Göksungur, Y. Üren S, Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour Technol 2005;96(1): 103-9. [
DOI:10.1016/j.biortech.2003.04.002]
41. Ibrahim, MNM. Ngah WSW, Norliyana MS, et al. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J Hazard Mater 2010;182(1): 377-85. [
DOI:10.1016/j.jhazmat.2010.06.044]