[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Accepted articles :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing::
Open Access Policy::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 2 (3-2023) ::
jehe 2023, 10(2): 173-188 Back to browse issues page
Efficiency of Natural Bio-adsorbent of Corn Silk for Removal of Lead Ions from Agricultural Effluents
Mitra Sharifpour , Mehrdad Cheraghi * , Soheil Sobhanardakani , Bahareh Lorestani
Professor, Department of Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Abstract:   (553 Views)
Introduction and purpose: Nowadays, the entrance of heavy metals as inorganic pollutants into agricultural waters is one of the major concerns in all over the world. In the past few years, the adsorption of heavy metals by various categories of bio-adsorbents has been investigated via different process, including surface and chemical adsorption. In this research, corn silk has been used as an efficient bio-adsorbent for adsorption of lead ions from agricultural effluents.
Materials and methods: Firstly, corn silk prepared from the fields around Kermanshah, afterward washed with distilled water and heated in an oven for 24 hours until it dried and rubbed. The prepared sample used for the adsorption of lead metal experiments.
Findings: In higher concentration of the adsorbent, the absorption capacity of ions decreases drastically. Also, the optimal pH value for the absorption process obtained around 5. The kinetic data exhibited that the metal adsorption process followed pseudo-second-order kinetics. Furthermore, thermodynamic data revealed that the process of metal absorption is spontaneous and the absorption happened physically.
Conclusion: The results clearly showed that the corn silk as a biosorbent can be effective for the removal of lead ions from aquatic solutions compared to previous reports. We can conclude that, the efficiency of biosorbent refers to the functional groups with high absorption power such as hydroxyl. In addition, the rate of adsorption of pollutants by the corn silk is significant, so that after 30 minutes the surface adsorption process reaches equilibrium stage.
Keywords: Biosorbent, Agricultural effluent, Heavy metals, Corn silk, Adsorption
Full-Text [PDF 1056 kb]   (252 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/11/28 | Accepted: 2023/04/17 | Published: 2023/10/2
References
1. Savci, S. An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 2012;3(1): 73. [DOI:10.7763/IJESD.2012.V3.191]
2. Vardhan, KH. Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 2019;290: 111197. [DOI:10.1016/j.molliq.2019.111197]
3. Schwarzenbach, RP. Egli T, Hofstetter TB, et al. Global water pollution and human health. Annu Rev Environ Resour 2010;35: 109-36. [DOI:10.1146/annurev-environ-100809-125342]
4. Moss, B. Water pollution by agriculture. Trans R Soc B: Biol Sci 2008;363(1491): 659-66. [DOI:10.1098/rstb.2007.2176]
5. Saxena, A. Bhardwaj M, Allen T, et al. Adsorption of heavy metals from wastewater using agricultural-industrial wastes as biosorbents. Water Sci 2017;31(2): 189-97. [DOI:10.1016/j.wsj.2017.09.002]
6. Fu, Z. Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods 2020;30(3): 167-76. [DOI:10.1080/15376516.2019.1701594]
7. De Vries, W. Römkens PF, Schütze G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev Environ Contam Toxicol 2007: 91-130. [DOI:10.1007/978-0-387-69163-3_4]
8. Joseph, L. Jun B-M, Flora JR, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019;229: 142-59. [DOI:10.1016/j.chemosphere.2019.04.198]
9. Pan, Z. An L. Removal of heavy metal from wastewater using ion exchange membranes. Applications of ion exchange materials in the environment 2019: 25-46. [DOI:10.1007/978-3-030-10430-6_2]
10. Zandipak, R. Sobhanardakani S, Shirzadi A. Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB-SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Separ Sci Technol 2020;55(3): 456-70. [DOI:10.1080/01496395.2019.1566262]
11. Liu, L. Guo X, Tallon R, et al. Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization. Chem Comm 2017;53(5): 881-4. [DOI:10.1039/C6CC08515F]
12. Carolin, CF. Kumar PS, Saravanan A, et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J Env Chem Eng 2017;5(3): 2782-99. [DOI:10.1016/j.jece.2017.05.029]
13. Zhu, Y. Fan W, Zhou T, Li X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci Total Environ 2019;678: 253-66. [DOI:10.1016/j.scitotenv.2019.04.416]
14. Abbas, M. Mass Transfer Processes in the Adsorption of Lead (Pb 2+) by Apricot Stone Activated Carbon (ASAC): Isotherms Modeling and Thermodynamic Study. Prot Met Phys Chem Surf 2021;57: 687-98. [DOI:10.1134/S207020512104002X]
15. M Abdul-Raheim, A-R. Shimaa M E-S, Reem K F, Manar E A-R. Low cost biosorbents based on modified starch iron oxide nanocomposites for selective removal of some heavy metals from aqueous solutions. Adv Mater Lett 2016;7(5): 402-9. [DOI:10.5185/amlett.2016.6061]
16. Talebzadeh, F. Zandipak R, Sobhanardakani S. CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb(II), Ni(II) and V(V) ions from petrochemical wastewater. Desalin Water Treat 57(58): 28363-77. [DOI:10.1080/19443994.2016.1188733]
17. Sobhanardakani, S. Parvizimosaed H, Olyaie E. Heavy metals removal from wastewaters using organic solid waste-rice husk. Environ Sci Pollut Res 2013; 20(8): 5265-71. [DOI:10.1007/s11356-013-1516-1]
18. Cheraghi, M. Sobhanardakani S, Zandipak R, et al. Removal of Pb(II) from aqueous solutions using waste tea leaves. Iran J Toxicol 2015;9(28): 1247-53.
19. Richards, S. Dawson J, Stutter M. The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants. J Environ Manage 2019;231: 275-81. [DOI:10.1016/j.jenvman.2018.10.019]
20. Shafiq, M. Alazba A, Amin M. Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. Sains Malays 2018;47(1): 35-49. [DOI:10.17576/jsm-2018-4701-05]
21. Tabassum, RA. Shahid M, Niazi NK, et al. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. Int J Phytoremediation 2019;21(6): 509-18. [DOI:10.1080/15226514.2018.1501340]
22. Rudi, NN. Muhamad MS, Te Chuan L, et al. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon 2020;6(9): e05049. [DOI:10.1016/j.heliyon.2020.e05049]
23. Syeda, HI. Sultan I, Razavi KS, Yap P-S. Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. JWPE 2022;46: 102446. [DOI:10.1016/j.jwpe.2021.102446]
24. Sulyman, M. Namiesnik J, Gierak A. Low-cost Adsorbents Derived from Agricultural By-products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review. Pol J Environ Stud 2017;26(3). [DOI:10.15244/pjoes/66769]
25. Rani, GU. Konreddy AK, Mishra S. Novel hybrid biosorbents of agar: Swelling behaviour, heavy metal ions and dye removal efficacies. Int J Biol Macromol 2018;117: 902-10. [DOI:10.1016/j.ijbiomac.2018.05.163]
26. Milojković, JV. Mihajlović ML, Stojanović MD, et al. Pb (II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study. J Chem Technol Biotechnol 2014;89(5): 662-70. [DOI:10.1002/jctb.4184]
27. Pujol, D. Liu C, Gominho J, et al. The chemical composition of exhausted coffee waste. IInd Crops Prod 2013;50: 423-9. [DOI:10.1016/j.indcrop.2013.07.056]
28. Lyman, DJ. Benck R, Dell S, et al. FTIR-ATR analysis of brewed coffee: effect of roasting conditions. J Agric Food Chem 2003;51(11): 3268-72. [DOI:10.1021/jf0209793]
29. Blázquez, G. Martín-Lara M, Dionisio-Ruiz E, et al. Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J Ind Eng Chem 2011;17(5-6): 824-33. [DOI:10.1016/j.jiec.2011.08.003]
30. Chen, H. Dai G, Zhao J, et al. Removal of copper (II) ions by a biosorbent-Cinnamomum camphora leaves powder. J Hazard Mater 2010;177(1-3): 228-36. [DOI:10.1016/j.jhazmat.2009.12.022]
31. Tong, K. Kassim MJ, Azraa A. Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: Equilibrium, kinetics, and thermodynamic studies. J Chem Eng 2011;170(1): 145-53. [DOI:10.1016/j.cej.2011.03.044]
32. Bricker, O. Some stability relations in the system Mn-O2-H2O at 25 and one atmosphere total pressure. Am Mineral 1965;50(9): 1296-354.
33. Ozsoy, HD. Kumbur H. Adsorption of Cu (II) ions on cotton boll. J Hazard Mater 2006;136(3): 911-6. [DOI:10.1016/j.jhazmat.2006.01.035]
34. OuYang, X-k. Jin R-N, Yang L-P, et al. Partially hydrolyzed bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb (II) from aqueous mixtures. J Agric Food Chem 2014;62(25): 6007-15. [DOI:10.1021/jf5015846]
35. Khoramzadeh, E. Nasernejad B, Halladj R. Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 2013;44(2): 266-9. [DOI:10.1016/j.jtice.2012.09.004]
36. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40(9): 1361-403. [DOI:10.1021/ja02242a004]
37. Freundlich, H. Over the adsorption in solution. J Phys Chem 1906;57(385471): 1100-7.
38. Iqbal, M. Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 2009;164(1): 161-71. [DOI:10.1016/j.jhazmat.2008.07.141]
39. Taşar, Ş. Kaya F, Özer A. Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2014;2(2): 1018-26. [DOI:10.1016/j.jece.2014.03.015]
40. Göksungur, Y. Üren S, Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour Technol 2005;96(1): 103-9. [DOI:10.1016/j.biortech.2003.04.002]
41. Ibrahim, MNM. Ngah WSW, Norliyana MS, et al. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J Hazard Mater 2010;182(1): 377-85. [DOI:10.1016/j.jhazmat.2010.06.044]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

sharifpour M, Cheraghi M, Sobhanardakani S, Lorestani B. Efficiency of Natural Bio-adsorbent of Corn Silk for Removal of Lead Ions from Agricultural Effluents. jehe 2023; 10 (2) :173-188
URL: http://jehe.abzums.ac.ir/article-1-952-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 2 (3-2023) Back to browse issues page
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4657