1. 1.Masssodinejad M, Eravani E, Eravani H, Agayani E. Water treatment Principles and design. Tehran; 2011.
2. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical engineering journal. 2013;217:119-28. [
DOI:10.1016/j.cej.2012.11.069]
3. Safety Assessment of Di(2-ethylhexyl) phthalate (DEHP) Released from PVC Medical Devices. Center for Devices and Radiological Health U.S. Food and Drug Administration 12709 Twinbrook Parkway Rockville, MD 20852, 2011.
4. ATSDR, toxicological Profile for Di(2-ethylhexyl) Phthalate. Agency for Toxic Substances and Disease, Atlanta, GA, 2002.
5. NTP-CERHR, Expert panel re-evaluation of DEHP, Meeting summary. 2005.
6. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. International journal of hygiene and environmental health. 2007;210(5):623-34. [
DOI:10.1016/j.ijheh.2007.07.011]
7. Latini G. Monitoring phthalate exposure in humans. Clinica Chimica Acta. 2005;361(1-2):20-9. [
DOI:10.1016/j.cccn.2005.05.003]
8. Hauser R, Duty S, Godfrey-Bailey L, Calafat AM. Medications as a source of human exposure to phthalates. Environmental health perspectives. 2004;112(6):751-3. [
DOI:10.1289/ehp.6804]
9. Lorz PM, Towae FK, Enke W, Jäckh R, Bhargava N, Hillesheim W. Phthalic acid and derivatives. Ullmann's encyclopedia of industrial chemistry. 2000. [
DOI:10.1002/14356007.a20_181]
10. FDA, Safety Assessment of Di(2-ethylhexyl)Phthalate (DEHP) Release from Medical Devices.. US Food and Drug Administration, Washington, DC http://www.fda.gov/cdrh/ost/dehp-pvc.pd, 2002.
11. Kalmykova, Y., et al., Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarb-ons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters. water research, 2014. 56: 246 -57. [
DOI:10.1016/j.watres.2014.03.011]
12. Chen H-W, Ku Y, Irawan A. Photodecomposition of o-cresol by UV-LED/TiO2 process with controlled periodic illumination. Chemosphere. 2007;69(2):184-90. [
DOI:10.1016/j.chemosphere.2007.04.051]
13. Tchobanoglous G, Burton FL, Stensel HD. Waste water Engineering: treatment and reuse. 4th ed. New York: McGraw-Hill; 2003
14. Lucas MS, Peres JA, Li Puma G. Advanced Oxidation Processes for Water and Wastewater Treatment. Water. 2021;13(9):1309. [
DOI:10.3390/w13091309]
15. Rahmani AR, Shabanlo A, Majidi S, Tarlani Azar M, Mehralipour J. Efficiency of Ciprofloxacine removal from Pharmaceutial effluents using the Ozone/Persolfate (O3/PS) process. J water wastewater. 2016; 1(101): 40-8.
16. Lucas MS, Peres JA, Puma GL. Treatment of winery wastewater by ozone based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. J Sep Purif Technol 2010 May 11; 72 (3): 235-41. [
DOI:10.1016/j.seppur.2010.01.016]
17. Moussavi G, Alahabadi A ,Jalili Y. The Study of wastewater Treatment the Disinfection custom Gat by ozonation and processes using activated carbon as the catalytyst. J ofResearch inEnvironmental Health. 2015: 1(1):20-28
18. Mazloomi, Nabizadeh Noudehi R, Noori Sepehr M. Efficiency of Response Surface Methodology for Optimizing Catalytic Ozonation Process with Activated Carbon in Removal of Petroleum Compound from Groundwater Resources. Journal of Health,2013,4(3)198-206
19. Faria PCC, Orfao JJM, Pereira MFR. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. J Water research. 2005;39(8):1461-70 [
DOI:10.1016/j.watres.2004.12.037]
20. Arslan-Alaton I, Caglayan AE. Ozonation of Procaine Penicillin G formulation effluent Part I: Process optimization and kinetics. J Chemosphere. 2005;59(1):31-9 [
DOI:10.1016/j.chemosphere.2004.10.014]
21. Oliveira TF, Chedeville O, Fauduet H, Cagnon B. Use of ozone/activated carbon coupling to remove diethyl phthalate from water: Influence of activated carbon textural and chemical properties. J Desalination. 2011;276(1):359-65 [
DOI:10.1016/j.desal.2011.03.084]
22. Pocostales P, Álvarez P, Beltrán FJ. Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water. J Chemical Engineering. 2011;168(3):1289-95. [
DOI:10.1016/j.cej.2011.02.042]
23. El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence. 2010;130(12):2327-31. [
DOI:10.1016/j.jlumin.2010.07.013]
24. Gonçalves AG, Órfão JJM, Pereira MFR. Catalytic ozonation of sulfamethoxazole in the presence of carbon materials: catalytic performance and reaction pathways. J of Hazardous Materials.2012; 239-240: 167-174 [
DOI:10.1016/j.jhazmat.2012.08.057]
25. Hossaini, H., G. Moussavi, and M. Farrokhi, The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water.Water research,2014.59,pp.130-144 [
DOI:10.1016/j.watres.2014.04.009]
26. Amine M ، Allahabadi A، Moussavi G. Evalouation of removal antibiotic tetraciclin of contamination water by catalytic ozonation. journal sabzeval university of medical science 2020;28:1.
27. Aguinaco A, Beltrán FJ, García-Araya JF, Oropesa A. Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables. Journal Chemical Engineering l 2012; 189:275-82. [
DOI:10.1016/j.cej.2012.02.072]
28. Zeng S,Cui C,Lian Q,Xia X,Yang F. ozonation performance ofWWTP secondaryeffluent of antibiotic manufacturing Waste water. J chemosphere.2010;81(9):1159-66 [
DOI:10.1016/j.chemosphere.2010.08.058]