[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Accepted articles :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing::
Open Access Policy::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 3 (5-2024) ::
jehe 2024, 11(3): 287-301 Back to browse issues page
Effect of intercropping on the Cd accumulation in soil and rice plants: A review
Sajjad Shaker * , Mohammad Rabiee
Expert, Department of Agronomy and Plant Breeding, Rice Research Institute, Rasht, Iran
Abstract:   (629 Views)
Background: A high cadmium (Cd) concentration in the paddy soil and translocation to the rice grain and the food chain is a serious environmental problem. Hence, it is essential to develop strategies for reducing Cd accumulation in rice and maintaining food safety. Phytoremediation is a cost-effective technique used to extract or remove Cd from contaminated sites. Intercropping is regarded as an effective technique for enhancing the Cd phytoremediation efficiency. According to this, the purpose of this study was to evaluate the effect of intercropping on the Cd accumulation in soil and rice plants.
Methods: Data for the present study was collected through searching articles in databases, including Google Scholar, Springer, ScienceDirect, ProQuest, PubMed, ResearchGate, Scopus and Elsevier. In the initial search, a total of 62 articles were found in the period 2003 to 2022, and was reduced after removing duplicates to 45 articles. Then, in the screening stage, the title and abstract of the articles were reviewed and at the end, 29 articles remained. The full text of the screened articles was studied and finally, 19 articles were used in this study.
Results: The results showed that intercropping of the high-Cd and the low-Cd rice cultivars is an advantageous practice for Cd remediation in paddy soils. So that intercropping with the high-Cd rice cultivar decreased grain Cd content, and improved the yield of the low-Cd rice cultivar. Also, intercropping of rice with Water spinach, Sesbania cannabina, Alligator flag, Sphagneticola calendulacea, Canna indica and Pontederia cordata, can function as an effective way for Cd remediation and guarantee rice grain safety.
Conclusion: Intercropping with hyperaccumulator plants is ideal to achieve safe rice production and phytoremediation of Cd-contaminated soil.
Keywords: Cadmium, Hyperaccumulator, Intercropping, Phytoremediation, Rice
Full-Text [PDF 618 kb]   (208 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2024/05/2 | Accepted: 2024/06/11 | Published: 2024/07/9
References
1. Hu U, Chan PT, Wu F, et al. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquatica Forsk.) in an intercropping system. Appl Soil Ecol 2013;63: 29-35. [DOI:10.1016/j.apsoil.2012.09.002]
2. Ghosh M, Singh S. A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 2005;133: 365-371. [DOI:10.1016/j.envpol.2004.05.015] [PMID]
3. Islam F, Wang J, Farooq MA, et al. Rice responses and tolerance to salt stress: Deciphering the physiological and molecular mechanisms of salinity adaptation. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK. editor. Advances in Rice Research for Abiotic Stress Tolerance. Elsevier; 2019. p. 791-819. [DOI:10.1016/B978-0-12-814332-2.00040-X]
4. Liang J, Feng C, Zeng G, et al. Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China. Chemosphere 2017;189: 198-205. [DOI:10.1016/j.chemosphere.2017.09.046] [PMID]
5. Pereira G, Molina SMG, Lea P, Azevedo RA. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 2002;239: 123-132. [DOI:10.1023/A:1014951524286]
6. Song WE, Chen SB, Liu JF, et al. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agric 2015;14: 1845-1854. [DOI:10.1016/S2095-3119(14)60926-6]
7. Ashraf U, Kanu AS, Mo Z, et al. Lead toxicity in rice: effects, mechanisms, and mitigation strategies-a mini review. Environ Sci Pollut Res 2015;22(23): 18318-18332. [DOI:10.1007/s11356-015-5463-x] [PMID]
8. Zhang XF, Zhang XH, Gao B, et al. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum Americanum × P. purpureum). Biomass Bioenergy 2014;67: 179-187. [DOI:10.1016/j.biombioe.2014.04.030]
9. Yu Y, Wan Y, Camara AY, Li H. Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice. Chemosphere 2018;196: 303-310. [DOI:10.1016/j.chemosphere.2018.01.002] [PMID]
10. Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharm 2009;238: 201-208. [DOI:10.1016/j.taap.2009.04.020] [PMID]
11. Ma L, Wu Y, Wang Q, Feng Y. The endophytic bacterium relieved healthy risk of pakchoi intercropped with hyperaccumulator in the cadmium polluted greenhouse vegetable field. Environ Pollut 2020;264: 114796. [DOI:10.1016/j.envpol.2020.114796] [PMID]
12. Pandey VC, Bajpai O, Singh N. Energy crops in sustainable phytoremediation. Renew Sustain Energy Rev 2016;54: 58-73. [DOI:10.1016/j.rser.2015.09.078]
13. Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 2010;8(1): 1-17. [DOI:10.1007/s10311-009-0268-0]
14. Murakami M, Nakagawa F, Ae N, et al. Phytoextraction by rice capable of accumulating Cd at high levels: Reduction of Cd content of rice grain. Environ Sci Technol 2009;43: 5878-5883. [DOI:10.1021/es8036687] [PMID]
15. Sarwar N, Imran M, Shaheen MR, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017;171: 710-721. [DOI:10.1016/j.chemosphere.2016.12.116] [PMID]
16. Lin H, Wang Z, Liu C, Dong Y. Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosphere 2022;305: 135457. [DOI:10.1016/j.chemosphere.2022.135457] [PMID]
17. Tang L, Hamid Y, Zehra A, et al. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Environ Pollut 2020; 265: 114861. [DOI:10.1016/j.envpol.2020.114861] [PMID]
18. Tang Y, He J, Yu X, et al. Intercropping with Solanum nigrum and Solanum photeinocarpum from Two Ecoclimatic Regions Promotes Growth and Reduces Cadmium Uptake of Eggplant Seedlings. Pedosphere 2017;27(3): 638-644. [DOI:10.1016/S1002-0160(17)60358-8]
19. Huang B, Xin J, Dai H, Zhou W. Effects of interaction between cadmium (Cd) and selenium (Se) on grain yield and Cd and Se accumulation in a hybrid rice (Oryza sativa) system. J Agric Food Chem 2017;65: 9537-9546. [DOI:10.1021/acs.jafc.7b03316] [PMID]
20. Wu JS, Ge TD, Hu YJ. A review on the coupling of biogeochemical process for key elements and microbial regulation mechanisms in paddy rice ecosystems. Acta Ecologica Sinica 2015;35: 6626-6634. [DOI:10.5846/stxb201506081157]
21. Wang FJ, Wang M, Liu ZP, et al. Different responses of low grain-Cd-accumulating and high grain-Cd accumulating rice cultivars to Cd stress. Plant Physiol Biochem 2015;96: 261-269. [DOI:10.1016/j.plaphy.2015.08.001] [PMID]
22. Hu Y, Cheng H, Tao S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ Int 2016;92-93: 515-532. [DOI:10.1016/j.envint.2016.04.042] [PMID]
23. Kashem M, Singh B. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutri Cycl Agroecosys 2001;61(3): 247-255. https://doi.org/10.1023/A:1013762204510 [DOI:10.1023/A:1013724521349]
24. Li W, Xu B, Song Q, et al. The identification of hotspots of heavy metal pollution in soil-rice systems at a regional scale in eastern China. Sci Total Environ 2014;472: 407-420. [DOI:10.1016/j.scitotenv.2013.11.046] [PMID]
25. Rashid I, Murtaza G, Zahir ZA, Farooq M. Effect of humic and fulvic acid transformation on cadmium availability to wheat cultivars in sewage sludge amended soil. Environ Sci Pollu Res 2018;25: 16071-16079. [DOI:10.1007/s11356-018-1821-9] [PMID]
26. Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 2016;50(8): 4178-4185. [DOI:10.1021/acs.est.5b05424] [PMID]
27. Chen XW, Wu L, Luo N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma 2019;337: 749-757. [DOI:10.1016/j.geoderma.2018.10.029]
28. Wang J, Lu X, Zhang J, et al. Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. J Hazard Mater 2020;394: 122505. [DOI:10.1016/j.jhazmat.2020.122505] [PMID]
29. Li Z, Li L, Chen GPJ. Bioavailability of Cd in a soil-rice system in China: soil type versus genotype effects. Plant Soil 2005;271: 165-173. [DOI:10.1007/s11104-004-2296-7]
30. Wang MY, Chen AK, Wong MH, et al. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 2011;159: 1730-1736. [DOI:10.1016/j.envpol.2011.02.025] [PMID]
31. Armstrong W. Oxygen diffusion from the roots of some British bog plants. Nature 1964;204: 801-802. [DOI:10.1038/204801b0]
32. Liu J, Cao C, Wong M, et al. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. J Environ Sci China 2010;22: 1067-1072. [DOI:10.1016/S1001-0742(09)60218-7] [PMID]
33. An L, Pan Y, Wang Z, Zhu, C. Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil 2011;345: 237-245. [DOI:10.1007/s11104-011-0775-1]
34. Liu Y, Zhuang P, Li ZA, et al. Cadmium accumulation in maize monoculture and intercropping with six legume species. Acta Agric Scand, Sect B- Soil Plant Sci 2013;63(4): 376-382. [DOI:10.1080/09064710.2013.777094]
35. Jones DL, Dennis PG, Owen AG, et al. Organic acid behavior in soil-misconceptions and knowledge gaps. Plant Soil 2003;248: 31-41. [DOI:10.1023/A:1022304332313]
36. Khan AG, Keuk C, Chaudhry TM, et al. Role of plants, mycorrhizae and phytohelators in heavy metal contaminated land remediation. Chemosphere 2000;41: 197-207. [DOI:10.1016/S0045-6535(99)00412-9] [PMID]
37. Wang J, Liu C, Zhang X, et al. Effects of applying hyperaccumulator straw in soil on growth and cadmium accumulation of Galinsoga parviflora. Environ Prog Sustain 2016;35: 618-623. [DOI:10.1002/ep.12226]
38. Yang B, Shu WS, Ye ZH, et al. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 2003;52: 1593-1600. [DOI:10.1016/S0045-6535(03)00499-5] [PMID]
39. Whiting SN. Leake JR, McGrath SP, et al. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense. Environ Sci Technol 2001;35: 3237-3241. [DOI:10.1021/es010644m] [PMID]
40. Li NY, Li ZA, Zhuang P, et al. Cadmium uptake from soil by maize with intercrops. Water Air Soil Pollut 2009;199: 45-56 [DOI:10.1007/s11270-008-9858-x]
41. Liu L, Li Y, Tang J, et al. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil. J Environ Sci 2011;23: 453-460. [DOI:10.1016/S1001-0742(10)60430-5] [PMID]
42. Azeez JO, Hassan OA, Adesodun JK, Arowolo TA. Soil metal sorption characteristics and its influence on the comparative effectiveness of EDTA and legume intercrop on the phytoremediative abilities of Maize (Zea mays), Mucuna (Mucuna pruriens), Okra (Abelmoschus esculentus), and Kenaf (Hibiscus cannabinus). Soil Sediment Contam. Int J 2013;22: 930-957. [DOI:10.1080/15320383.2013.770442]
43. Xia H, Liang D, Chen F, et al. Effects of mutual intercropping on cadmium accumulation by the accumulator plants Conyza canadensis, Cardamine hirsuta, and Cerastium glomeratum. Int J Phytoremediation 2018;20: 855-861. [DOI:10.1080/15226514.2018.1438356] [PMID]
44. Luo J, He W, Rinklebe J, et al. Distribution characteristics of Cd in different types of leaves of Festuca arundinacea intercropped with Cicer arietinum L.: a new strategy to remove pollutants by harvesting senescent and dead leaves. Environ Res 2019;179: 108801. [DOI:10.1016/j.envres.2019.108801] [PMID]
45. Yang X, Qin JH, Li JC, et al. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J Hazard Mater 2021;406: 124325. [DOI:10.1016/j.jhazmat.2020.124325] [PMID]
46. Mubeen S, Ni W, He C, Yang Z. Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety. Agriculture 2003;13(2): 471. [DOI:10.3390/agriculture13020471]
47. Li L, Zou D, Zeng X, et al. Enhancing cadmium extraction potential of Brassica napus: effects of rhizosphere interactions. J Environ Manag 2021;284: 112056. [DOI:10.1016/j.jenvman.2021.112056] [PMID]
48. Qin L, Li Z, Li B, et al. Organic acid excretion in root exudates as a mechanism of cadmium uptake in a Sonchus asper-Zea mays intercropping system. Bull Environ Contam Toxicol 2021;107: 1059-1064. [DOI:10.1007/s00128-021-03361-x] [PMID]
49. Yi T, Juan H, Xuena Y, et al. Intercropping with Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings. Pedosphere 2017;27: 638-644. [DOI:10.1016/S1002-0160(17)60358-8]
50. Zou J, Song F, Lu Y, et al. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Chemosphere 2021;276: 130223. [DOI:10.1016/j.chemosphere.2021.130223] [PMID]
51. Hussein Y, Amin G, Askora A, Gahin H. Phytotoxicity remediation in wheat (Triticum aestivum L.) cultivated in Cadmium- contaminated soil by intercropping design. Bioscience Research 2019;16(3): 2678-2689.
52. Kang Z, Zhang W, Qin J, et al. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotoxicol Environ Saf 2020;190: 110102. [DOI:10.1016/j.ecoenv.2019.110102] [PMID]
53. Yang X, Zhang W, Qin J, et al. Role of passivators for Cd alleviation in rice-water spinach intercropping system. Ecotoxicol Environ Saf 2020;205: 111321. [DOI:10.1016/j.ecoenv.2020.111321] [PMID]
54. Chen X, Zhang Ze, Song X, et al. Interspecific root interaction enhances cadmium accumulation in Oryza sativa when intercropping with cadmium accumulator Artemisia argyi. Ecotoxicol Environ Saf 2024;269: 115788. [DOI:10.1016/j.ecoenv.2023.115788] [PMID]
55. Wu HJ, Li L, Zhang FX. The Influence of Interspecific Interactions on Cd Uptake by Rice and Wheat Intercropping. Rev China Agric Sci Technol 2003;5: 43-47.
56. Xue T, Liao X, Li H, et al. Remediation of Cd contaminated paddy fields by intercropping of the high- and low-Cd-accumulating rice cultivars. Sci Total Environ 2023;878: 163133. [DOI:10.1016/j.scitotenv.2023.163133] [PMID]
57. Xiang H, Lan N, Wang F, et al. An effective planting model to decrease cadmium accumulation in rice grains and plants: Intercropping rice with wetland plants. Pedosphere 2023;33(2): 355-364. [DOI:10.1016/j.pedsph.2022.06.054]
58. Lei LL, Zhu QY, Xu PX, Jing YX. The intercropping and arbuscular mycorrhizal fungus decrease Cd accumulation in upland rice and improve phytoremediation of Cd-contaminated soil by Sphagneticola calendulacea (L.) Pruski. J Environ Manage 2021;298: 113516. [DOI:10.1016/j.jenvman.2021.113516] [PMID]
59. Kang Z, Gong M, Li Y, et al. Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Sci Total Environ 2021;800: 149600. [DOI:10.1016/j.scitotenv.2021.149600] [PMID]
60. Xu Y, Feng J, Li H. How intercropping and mixed systems reduce cadmium concentration in rice grains and improve grain yields. J Hazard Mater 2021;402: 123762. [DOI:10.1016/j.jhazmat.2020.123762] [PMID]
61. Liu Y, Liu K, Li Y, et al. Cadmium contamination of soil and crops is affected by intercropping and rotation systems in the lower reaches of the Minjiang River in south-western China. Environ Geochem Health 2016;38(3): 811-20. [DOI:10.1007/s10653-015-9762-4] [PMID] []
62. Kama R, Ma Q, Nabi F, et al. Hyperaccumulator Solanum nigrum L. Intercropping reduced rice Cadmium uptake under a high-bed and low-ditch planting system. Plants 2023;12(23): 4027. [DOI:10.3390/plants12234027] [PMID] []
63. Liu C, Guo B, Li H, et al. Azolla incorporation under flooding reduces grain cadmium accumulation by decreasing soil redox potential. Sci Rep 2021;11: 6325. [DOI:10.1038/s41598-021-85648-x] [PMID] []
64. Xu Y, Feng J, Li H. Water management increased rhizosphere redox potential and decreased Cd uptake in a low-Cd rice cultivar but decreased redox potential and increased Cd uptake in a high-Cd rice cultivar under intercropping. Sci Total Environ 2021;751: 141701. [DOI:10.1016/j.scitotenv.2020.141701] [PMID]
65. Ji P, Sun T, Song Y, , et al. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 2011;159: 762-768. [DOI:10.1016/j.envpol.2010.11.029] [PMID]
66. Ma J, Lei E, Lei M, et al. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 2018;194: 737-744. [DOI:10.1016/j.chemosphere.2017.11.135] [PMID]
67. GUO SY, WANG HJ, WANG HB. Advances in the intercropping remediation of heavy metal polluted soil. Chin J Eco-Agric 2021;29(5): 890-902.
68. Yang R, Tang J, Chen X, et al. Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol 2007;37: 240-246. [DOI:10.1016/j.apsoil.2007.07.004]
69. Baker AJM, Whiting SN. In search of the Holy Grail - a further step in understanding metal hyperaccumulation? New Phytol 2002;155: 1-4. [DOI:10.1046/j.1469-8137.2002.00449_1.x] [PMID]
70. Glaze-Corcoran S, Hashemi M, Sadeghpour A, et al. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv Agron 2020;162: 199-256. [DOI:10.1016/bs.agron.2020.02.004]
71. Connollya J, Gomab HC, Rahimc K. The information content of indicators in intercropping research. Agr Ecosyst Environ 2001;87(2): 191-207. [DOI:10.1016/S0167-8809(01)00278-X]
72. Zou M, Zhou S, Zhou Y, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environ Pollut 2021;280: 116965. [DOI:10.1016/j.envpol.2021.116965] [PMID]
73. Lin Q, Tong W, Hussain B, et al. Cataloging of Cd allocation in late rice cultivars grown in polluted gleysol: implications for selection of cultivars with minimal risk to human health. Int J Environ Res Public Health 2020;17: 3632. [DOI:10.3390/ijerph17103632] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shaker S, Rabiee M. Effect of intercropping on the Cd accumulation in soil and rice plants: A review. jehe 2024; 11 (3) :287-301
URL: http://jehe.abzums.ac.ir/article-1-1041-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 3 (5-2024) Back to browse issues page
مجله مهندسی بهداشت محیط Journal of Environmental Health Enginering
Persian site map - English site map - Created in 0.06 seconds with 36 queries by YEKTAWEB 4660